From e64e33cd06d087549cfd72584b6ff93b3ce5420d Mon Sep 17 00:00:00 2001 From: Philipp Legner Date: Wed, 14 Oct 2020 14:25:34 +0200 Subject: [PATCH] Matrices 3D Playground (#237) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * First attempt at prototypes for matrix linear transformations * Centered shapes, each now on different pages. * Added much content+interactions to matrix content. * Edits from 8-7 user testing session * fixed indents and lint * added a sailboat shape * draw sailboat shape as polygons * Prototyping for Determinants * Cleaning up some content * Using function Geopad.animatePoint * Experimenting w/ THREE.js * Drawing a 3d arrow and scaling it with sliders. * DIAGRAM todo comments to help w/ understanding 3d (can omit) * Experimenting w/ Three.js to illustrate 3d systems of equations. * Cleaned up markdown explanations to match experimental three.js. * Replace "skew" with "shear" (not sure what happened here). * Matrix Multiplication Part 1, w/ images * Missed some skew references (use case-insensitive search next time) * Experimenting with displaying matrix multiplication as two-column scroll. * Section on formal rules/defintion for matrix mult. * ✍️ Section about Matrix Factorisation * Draft for Multiplication as Successive Transformations * A calculator-type interaction to demonstrate multiplication. * Aligned multiplying matrices horizontally. * Associative and Commutative property of matrix mult. (also added glossary terms). * Better animations for matrix-multiplying calculator * Matrix addition. * Scalar multiplication. * TODO comment for Distributive property * Slight refactoring for matrix-multiplying calculator * Outlined Step IDs for Matrix ch1 * Better segmenting for Chapter 2. * Outline Ch3 by IDs * Refactor point animation into one function. * Replace (pill) with (target) * Distributive glossary use math term. * Caption diagrams in Scroller Playground w/ corresponding images * Moved prototype/placeholder images to separate subfolder * Ch1 intro * Interactive Space Ship 🤯 🤯 🤯 * Better pills and fixed angles/points. * Angle paths * Triangle hover highlighting * Refactor transformation examples from separate chapters into Chapter 1 * Content for "matrix" and "linear-combination" sections * Content for "identity" and "basic-transformations" sections * Activity: Transform the Mathigon Logo * Content for last three sections, plus some earlier edits * Refactor repetitive code into single function. * Replace homemade function w/ Fermat.js function. * Replaced redundant g.grid Pug w/ Mixin * Cleanup * Remove merge duplicates Co-authored-by: Kevin DeLand --- content/matrices/content.md | 143 ++++++++++++++++++++ content/matrices/functions.ts | 127 ++++++++++++++++++ content/matrices/utils3d.ts | 202 +++++++++++++++++++++++++++++ content/shared/components/solid.ts | 36 +++++ 4 files changed, 508 insertions(+) create mode 100644 content/matrices/utils3d.ts diff --git a/content/matrices/content.md b/content/matrices/content.md index 74fec2a83..35967425c 100644 --- a/content/matrices/content.md +++ b/content/matrices/content.md @@ -1211,3 +1211,146 @@ Let's see why this is true geometrically. > sectionStatus: dev {.todo} COMING SOON + + +---------------------------------------------------------------------------------------------------- + + +## 3D playground + +> id: three-dimensions + +#### Watch what we can do with a 3d matrix +Watch what we can do with a 3d matrix. + +::: column(width=280) + + x-solid(size=280) + +::: + +Try adjusting the vector. + +x = ${x}{x|-2|-2,2,0.1} +y = ${y}{y|-2|-2,2,0.1} +z = ${z}{z|-2|-2,2,0.1} +
+ +Neat, huh? + +### Systems of Equations +A linear equation can be represented as a geometrical object, depending on how many variables it has. A linear equation with two variables can be represented as a [[line|plane|hypercube]]. A linear equation with three variables can be represented as a [[plane|line|point]]. + + + x-solid(size=300) + + +Try adjusting the vector (only Z does anything). + +x = ${xi}{xi|1|-2,2,0.1} +y = ${yi}{yi|1|-2,2,0.1} +z = ${zi}{zi|1|-2,2,0.1} +
+ +Above us is a system of three equations, each with three variables. The intersection of two of these planes gives us a [[line|plane|point]]. The intersection of all three of these planes gives us a [[point|line|plane]]. + + +--- + +## Scroller playground +> id: scroller + +Let's put a matrix on the right, and text on the left. + +::: column(width=300) + + // figure: img(src="images/proto-2/matrix-1-frn-fea.png") + table + tr + td + td(target="feature pref-A-1"): b {.m-red}Outdoors + td(target="feature pref-A-2"): b {.m-red}Veggie + tr + td.name(target="pref-A-1 pref-A-2"): b {.m-green}Alice + td.cell(target="pref-A-1") 1 + td.cell(target="pref-A-2") 4 + tr + td.name: b {.m-green}Bob + td.cell 3 + td.cell 0 + tr + td.name: b {.m-green}Charlie + td.cell 0 + td.cell 4 + tr + td.name: b {.m-green}Dave + td.cell 3 + td.cell 0 + + div x + + // figure: img(src="images/proto-2/matrix-1-fea-res.png") + table + tr + td + td(target="feat-A-1 feat-A-2"): b {.m-blue}Gauss + td: b {.m-blue}Laplace + td: b {.m-blue}Pizza + tr + td(target="feature feat-A-1"): b {.m-red}Outdoor + td.cell(target="feat-A-1") 3 + td.cell 1 + td.cell 3 + tr + td(target="feature feat-A-2"): b {.m-red}Veggie + td.cell(target="feat-A-2") 1 + td.cell 4 + td.cell 3 + + // figure: img(src="images/proto-2/matrix-1-frn-res-empty.png") + // figure: img(src="images/proto-2/mult-alice-gauss.png") (and above) + // figure: img(src="images/proto-2/mult-bob-laplace.png") (and above) + // figure: img(src="images/proto-2/matrix-1-frn-res-full.png") (change into) + table + tr + td + td(target="rest cell-A"): b {.m-blue}Gauss + td(target="rest cell-C"): b {.m-blue}Laplace + td(target="rest"): b {.m-blue}Pizza + tr + td.name(target="friend cell-A"): b {.m-green}Alice + td.cell(target="cell-A"): b {.reveal(when="blank-5")} 7 + td.cell + td.cell + tr + td.name(target="friend"): b {.m-green}Bob + td.cell + td.cell + td.cell + tr + td.name(target="friend cell-C"): b {.m-green}Charlie + td.cell + td.cell(target="cell-C"): b {.reveal(when="blank-7")} 16 + td.cell + tr + td.name(target="friend"): b {.m-green}Dave + td.cell + td.cell + td.cell + +::: column.grow(parent="right") + +The result will be a new table with the [{.green} friends](target:friend) as [[rows|columns]] and the [{.blue} restaurants](target:rest) as [[columns|rows]]. + +{.reveal(when="blank-0 blank-1")} How should we fill out this table? The value of each cell should represent how much each person might like each restaurant. For example, the [{.orange} first cell](target:cell-A) will represent how much Alice might like [[Gauss Grill|Laplace Lounge]]. + +{.reveal(when="blank-2")} Alice has a [{.orange} preference of 1](target:pref-A-1) for Outdoor Seating, and Gauss Grill has a [{.orange} value of 3](target:feat-A-1) for Outdoor Seating, so we multiply these to get [[3]]. + +{.reveal(when="blank-3")} Alice has a [{.orange} preference of 4](target:pref-A-2) for Vegetarian Food, and Gauss Grill has a [{.orange}value of 1](target:feat-A-2) for Vegetarian Food, so we multiply these to get [[4]]. + +{.reveal(when="blank-4")} We sum together all the products to get [[7]], which we can write in the [{.orange} first cell](target:cell-A). + +{.reveal(when="blank-5")}[Continue](btn:next) + +{.reveal(when="next-0")} [{.teal} This cell](target:cell-C) will represent how much [[Charlie|Bob]] might like [[Laplace Lounge|Pizzathagoras]]. +::: diff --git a/content/matrices/functions.ts b/content/matrices/functions.ts index 7097670d8..7ce10a305 100644 --- a/content/matrices/functions.ts +++ b/content/matrices/functions.ts @@ -9,6 +9,8 @@ import {Matrix} from '@mathigon/fermat'; import {Angle, Point} from '@mathigon/euclid'; import {ElementView, ScreenEvent} from '@mathigon/boost'; import {Geopad, Step} from '../shared/types'; +import {Solid} from '../shared/components/solid'; +import * as u from './utils3d'; /** @@ -341,3 +343,128 @@ export function determinants($step:Step) { animateTransformationOnGeo($geopad, 'ipoint', 'jpoint', [[1, 1], [-1, -1]], ANIMATE); }); } + +export function threeDimensions($step: Step) { + const $solids = $step.$$('x-solid') as Solid[]; + + const basic3d = $solids[0]; + basic3d.addMesh((scene) => { + // $solids[1].addWireframe(new THREE.Line) + + // DRAW PLANES + const PLANE_SIZE = 4; + const zPlaneMaterial = Solid.translucentMaterial(0xcd0e66, 0.3); + const zPlane = new THREE.Mesh(new THREE.PlaneGeometry(PLANE_SIZE, PLANE_SIZE, 10, 10), zPlaneMaterial); + zPlane.rotateX(Math.PI / 2); + basic3d.addArrow([0, 0, 0], [0, 0, 1], 0xcd0e66); + + const yPlaneMaterial = Solid.translucentMaterial(0x0f82f2, 0.3); + const yPlane = new THREE.Mesh(new THREE.PlaneGeometry(PLANE_SIZE, PLANE_SIZE, 10, 10), yPlaneMaterial); + yPlane.rotateY(Math.PI / 2); + basic3d.addArrow([0, 0, 0], [0, 1, 0], 0x0f82f2); + + const xPlaneMaterial = Solid.translucentMaterial(0x22ab24, 0.3); + const xPlane = new THREE.Mesh(new THREE.PlaneGeometry(PLANE_SIZE, PLANE_SIZE, 10, 10), xPlaneMaterial); + xPlane.rotateZ(Math.PI / 2); + basic3d.addArrow([0, 0, 0], [1, 0, 0], 0x22ab24); + + const vectorArrow = basic3d.addArrow([0, 0, 0], [$step.model.x, $step.model.y, $step.model.z], 0x000000); + + $step.model.watch((state: any) => { + // A-HA! This doesn't work, and there's even a TODO to go with it + // "TODO Support changing the height of the arrow." + vectorArrow.updateEnds!([0, 0, 0], [state.x, state.y, state.z]); + scene.draw(); + }); + + return [xPlane, yPlane, zPlane]; + }); + + /** + * Add intersection lines to a solid. + * TODO: should use a new function in Fermat.js to calculate intersection lines. + * + * @param solid + */ + function addIntersectionLinesToSolid(solid: Solid) { + + // intersection b/t Yellow and Cyan planes + // x + y + z = 1 + // y = 1 + solid.addLine([0, 1, 0], [-1, 1, 1], 0x00ff00); + + // intersection b/t Magenta and Cyan planes + // z = 1, y = 1 + solid.addLine([2, 1, 1], [-1, 1, 1], 0x0000ff); + + // intersection b/t magenta and yellow planes + // x + y + z = 1 + // z = 1 + solid.addLine([0, 0, 1], [-1, 1, 1], 0xff0000); + } + + const soq = $solids[1]; + soq.addMesh((scene) => { + + u.addUnitVectorsToSolid(soq); + + // Plane for 1*x + 1*y + 1*z = 1 + const planeYellow = u.planeFromNormal( + new THREE.Vector3(1, 1, 1), + new THREE.Vector3(1, 0, 0), + 0xffff00 + ); + soq.object.add(planeYellow); + + // Plane for 0*x + 1*y + 0*z = 1 + // a.k.a. y=1 + const planeCyan = u.planeFromNormal( + new THREE.Vector3(0, 1, 0), + new THREE.Vector3(0, 1, 0), + 0x00ffff + ); + soq.object.add(planeCyan); + + // Plane for 0*x + 0*y + 1*z = 1 + // a.k.a. z=1 + const planeMagenta: THREE.Mesh = u.planeFromNormal( + new THREE.Vector3(0, 0, 1), + new THREE.Vector3(0, 0, 1), + 0xff00ff + ); + soq.object.add(planeMagenta); + + addIntersectionLinesToSolid(soq); + + // TODO: try this method + /* const px: THREE.Mesh = u.planeFromCoplanarPoints( + new Vector3(1, 0, 0), + new Vector3(0, 1, 0), + new Vector3(0, 0, 1), + 0xff00ff + ); + soq.object.add(px); */ + + $step.model.watch((state: any) => { + + // this moves the plane at z=1 to z=zi + const newPlane = u.planeFromNormal( + new THREE.Vector3(0, 0, state.zi), + new THREE.Vector3(0, 0, state.zi), + 0xff0ff + ); + planeMagenta.geometry.dispose(); + planeMagenta.geometry = newPlane.geometry; + scene.draw(); + + // not quite right... + /* const plane2 = u.planeFromNormal( + new THREE.Vector3(state.xi, state.yi, state.zi), + new THREE.Vector3(state.xi, state.yi, state.zi), + 0xffff00 + ); + planeCyan.geometry.dispose(); + planeCyan.geometry = plane2.geometry; */ + }); + }); +} diff --git a/content/matrices/utils3d.ts b/content/matrices/utils3d.ts new file mode 100644 index 000000000..8b71ccec1 --- /dev/null +++ b/content/matrices/utils3d.ts @@ -0,0 +1,202 @@ +import {Solid} from '../shared/components/solid'; +import {Vector3} from 'three'; + + +export function planeFromNormal(normal: THREE.Vector3, centroid: THREE.Vector3, color: number): THREE.Mesh { + // from here: + // https://stackoverflow.com/questions/40366339/three-js-planegeometry-from-math-plane + + // Create plane + const plane = new THREE.Plane(); + plane.setFromNormalAndCoplanarPoint(normal, centroid).normalize(); + + // Create a basic rectangle geometry + const planeGeometry = new THREE.PlaneGeometry(4, 4); + + // Align the geometry to the plane + const coplanarPoint = plane.coplanarPoint(centroid); + const focalPoint = new THREE.Vector3().copy(coplanarPoint).add(plane.normal); + planeGeometry.lookAt(focalPoint); + planeGeometry.translate(coplanarPoint.x, coplanarPoint.y, coplanarPoint.z); + + // Create mesh with the geometry + const planeMaterial = new THREE.MeshLambertMaterial({ + color, + side: THREE.DoubleSide, + transparent: true, + opacity: 0.2}); + const dispPlane = new THREE.Mesh(planeGeometry, planeMaterial); + return dispPlane; +} + +/** + * Draw unit vectors onto a solid. + * @param solid + * @param x number of stacked unit vectors in x-direction + * @param y number of stacked unit vectors in y-direction + * @param z number of stacked unit vectors in z-direction + */ +export function addUnitVectorsToSolid(solid: Solid, x=1, y=1, z=1) { + // X + [...Array(x).keys()].forEach(i => solid.addArrow([i, 0, 0], [i+1, 0, 0], 0x22ab24)); + + // Y -- add Y-unit vectors from 0 to 1 + [...Array(y).keys()].forEach(i => solid.addArrow([0, i, 0], [0, i+1, 0], 0x0f82f2)); + + // Z -- add Z-unit vectors from 0 to 1 + [...Array(z).keys()].forEach(i => solid.addArrow([0, 0, i], [0, 0, i+1], 0xcd0e66)); +} + +export function planeFromCoplanarPoints(a: Vector3, b: Vector3, c: Vector3, color: number) { + const plane = new THREE.Plane(); + plane.setFromCoplanarPoints(a, b, c); + + const planeGeometry = new THREE.PlaneGeometry(4, 4); + const planeMaterial = new THREE.MeshLambertMaterial({ + color, + side: THREE.DoubleSide, + transparent: true, + opacity: 0.2 + }); + + planeGeometry.setFromPoints([a, b, c]); + // planeGeometry. + + const dispPlane = new THREE.Mesh(planeGeometry, planeMaterial); + return dispPlane; +} + +/** + * Generate plane at z=k + * x=anything, y=anything, z=k + * @param z + */ +export function generateZPlane(z: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + + // default state, x=R, y=R, z=k + plane.position.z = z; + return plane; +} + +export function rotatedXPlane(rX: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + + // rX = 0; --> z=0 + // rX = PI/8; --> z=1,y=1 + // rX = PI/4; --> y=0 + plane.rotation.x = rX; + + plane.position.y = 1; + + // z = R * cos(rX); + // y = R * sin(rX); + + // we want to find these three points: + // - where does it cross x=0 plane? + // - where does it cross y=0 plane? + // - where does it cross z=0 plane? + return plane; +} + + +/// EXAMPLE 1 +/// +/// rotation.x = PI/2 +/// position.y = 1 +/// +/// crosses plane x=0 at line y=1, x=0, +/// is parallel to plane y=0 +/// crosses plane z=0 at line y=1, z=0 +/// +/// SOLUTION: 0*x + 1*y + 0*z = 1 +/// y = 1 + +/// EXAMPLE 2 +/// +/// rotation.x = PI/4 +/// position.y = 1 +/// +/// crosses plane x=0 at y=z+1 +/// crosses plane y=0 at line z=-1 +/// crosses plane z=0 at line y=1,x=0 +/// +/// SOLUTION: 0*x + 1*y + -1*z = 1 +/// y-z = 1 + + +/// EXAMPLE 3 +/// +/// rotation.x = 3*PI/4 +/// position.y = 1 +/// +/// crosses plane x=0 at y+z=1 +/// crosses plane y=0 at line z=1 +/// crosses plane z=0 at line y=1 +/// +/// SOLUTION: 0*x + 1*y + 1*z = 1 +/// y+z = 1 + +/** + * Generate plane at x=k + * x=k, y=anything, z=anything + * @param x + */ +export function generateXPlane(x: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + plane.rotateZ(Math.PI/2); + plane.position.x = x; + return plane; +} + +/** + * Generate plane at y=k + * x=anything, y=k, z=anything + * @param y + */ +export function generateYPlane(y: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + plane.rotateX(Math.PI/2); + plane.position.y = y; + return plane; +} + +/** + * Generate plane at a*x + b*y = k, z=R + * [0, b/k, R] + * [a/k, 0, R] + * angle = atan2 + */ +export function generateXYPlane(a: number, b: number, k: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + plane.rotateX(Math.PI/2); + const angle = Math.atan2(1/b, 1/a); + console.log(angle); + plane.rotateY(-angle); // <--- magic number + if (a !== 0) plane.position.x = (k/a)/2; // <--- freakin' magic number + console.log(plane.position.x); + if (b !== 0) plane.position.y = (k/b)/2; // <--- + console.log(plane.position.y); + + return plane; +} + +/** + * Generate plane at x+z=k, y=anything + * [0] + */ +export function generateXZPlane(k: number) { + const material = Solid.translucentMaterial(0x5A49C9, 0.2); + const plane = new THREE.Mesh(new THREE.PlaneGeometry(4, 4, 10, 10), material); + // plane.rotateX(Math.PI/2); + // plane.rotateX(-Math.PI/4); + // plane.position.x = k/2; + // plane.position.z = k/2; + + return plane; +} diff --git a/content/shared/components/solid.ts b/content/shared/components/solid.ts index 747f719f1..5d971c377 100755 --- a/content/shared/components/solid.ts +++ b/content/shared/components/solid.ts @@ -97,6 +97,7 @@ function createEdges(geometry: THREE.Geometry, material: THREE.Material, maxAngl // ----------------------------------------------------------------------------- // Custom Element +// DIAGRAM lots of useful stuff in here. @register('x-solid') export class Solid extends CustomElementView { private isReady = false; @@ -180,6 +181,7 @@ export class Solid extends CustomElementView { }; } + // DIAGRAM gonna need a couple arrows addArrow(from: Vector, to: Vector, color = STROKE_COLOR) { const material = new THREE.MeshBasicMaterial({color}); const obj = new THREE.Object3D() as Object3D; @@ -211,6 +213,33 @@ export class Solid extends CustomElementView { return obj; } + /** + * Draw a line. It's like drawing an arrow without cones on the end. + * @param from starting Vector + * @param to ending Vector + * @param color stroke color + */ + addLine(from: Vector, to: Vector, color = STROKE_COLOR) { + const material = new THREE.MeshBasicMaterial({color}); + const obj = new THREE.Object3D() as Object3D; + + const height = new THREE.Vector3(...from).distanceTo(new THREE.Vector3(...to)); + const line = new THREE.CylinderGeometry(0.02, 0.02, height, 8, 1, false); + obj.add(new THREE.Mesh(line, material)); + + obj.updateEnds = function(f: Vector, t: Vector) { + const q = new THREE.Quaternion(); + const v = new THREE.Vector3(t[0]-f[0], t[1]-f[1], t[2]-f[2]).normalize(); + q.setFromUnitVectors(new THREE.Vector3(0, 1, 0), v); + obj.setRotationFromQuaternion(q); + obj.position.set((f[0]+t[0])/2, (f[1]+t[1])/2, (f[2]+t[2])/2); + }; + + obj.updateEnds(from, to); + this.object.add(obj); + return obj; + } + addCircle(radius: number, color = STROKE_COLOR, segments = 64) { const path = new THREE.Curve(); path.getPoint = function(t) { @@ -247,6 +276,11 @@ export class Solid extends CustomElementView { return obj; } + addPlane(plane: THREE.Object3D) { + this.object.add(plane); + return plane; + } + // TODO merge addOutlined() and addWireframe(), by looking at // geometry.isConeGeometry etc. @@ -265,6 +299,7 @@ export class Solid extends CustomElementView { solidMaterial.clippingPlanes = planes; }; + // DIAGRAM: this is what we need! obj.updateGeometry = function(geo: THREE.Geometry) { solid.geometry.dispose(); solid.geometry = geo; @@ -309,6 +344,7 @@ export class Solid extends CustomElementView { } }; + // DIAGRAM: this is also what we need! obj.updateGeometry = function(geo: THREE.Geometry) { if (solid.updateGeometry) solid.updateGeometry(geo); for (const mesh of [outline, knockout]) {