-
Notifications
You must be signed in to change notification settings - Fork 24
/
test_ray_sampling.py
71 lines (57 loc) · 2.73 KB
/
test_ray_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""Produces a visualization of a ray sampling dataset."""
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from fourier_feature_nets import load_model, ImageDataset, RayDataset
def _parse_args():
parser = ArgumentParser("Ray Sampling Tester",
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("data_path", help="Path to the data NPZ")
parser.add_argument("output_path", help="Path to the output scenepic")
parser.add_argument("--mode",
choices=["full", "sparse", "dilate", "center"],
default="full", help="The dataset sampling mode")
parser.add_argument("--split", default="train",
help="Data split to visualize")
parser.add_argument("--num-samples", type=int, default=32,
help="Number of samples to take")
parser.add_argument("--resolution", type=int, default=50,
help="Ray sampling resolution")
parser.add_argument("--num-cameras", type=int, default=10,
help="Number of cameras")
parser.add_argument("--stratified", action="store_true",
help="Whether to randomly offset the samples")
parser.add_argument("--opacity-model",
help="Path to a model to use to predict opacity")
parser.add_argument("--batch-size", type=int, default=4096,
help="Batch size to use when quering the opacity model")
parser.add_argument("--device", default="cuda",
help="Pytorch compute device")
return parser.parse_args()
def _main():
args = _parse_args()
if args.opacity_model:
model = load_model(args.opacity_model)
if model is None:
return 1
model = model.to(args.device)
else:
model = None
dataset = ImageDataset.load(args.data_path, args.split,
args.num_samples, True,
args.stratified, model,
args.batch_size, sparse_size=args.resolution)
if dataset is None:
return 1
if args.num_cameras and args.num_cameras < dataset.num_cameras:
dataset = dataset.sample_cameras(args.num_cameras,
args.num_samples,
args.stratified)
if args.mode == "sparse":
dataset.mode = RayDataset.Mode.Sparse
elif args.mode == "center":
dataset.mode = RayDataset.Mode.Center
elif args.mode == "dilate":
dataset.mode = RayDataset.Mode.Dilate
scene = dataset.to_scenepic()
scene.save_as_html(args.output_path, "Ray Sampling")
if __name__ == "__main__":
_main()