-
Notifications
You must be signed in to change notification settings - Fork 0
/
rapport.tex
559 lines (459 loc) · 26.1 KB
/
rapport.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
\documentclass{article}
% Packages
\usepackage[utf8]{inputenc}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{pgfplots}
\newtheorem{Example}{Example}
\usepackage[T1]{fontenc} % Encodage des polices
\usepackage[english,french]{babel} % Langue du document
\usepackage{subcaption}
\usepackage{hyperref} % Pour les liens hypertextes
\usepackage{listings}
\usepackage{xcolor}
\usepackage{tabularx}
\newtheorem{theorem}{Theorem}[section]
\usepackage{pgfplots}
\pgfplotsset{compat=1.16}
\usepackage{tikz}
% Titre du rapport
\title{The Discovery of an Algebraic structure}
\author{ASSIGBE Komi \\ RAHOUTI Chahid .}
\date{\today}
\begin{document}
\maketitle
\newpage
\tableofcontents
\newpage
\section{Introduction}
Many differential equations encountered
in solving have parametric solutions.
Thus, to find the solution for each
parameter, this often requires
numerous calculations. To optimize
computation and storage times, we
define an algebraic structure
whereby, if we compute the solution
for parameters $\lambda_1$ and $ \lambda_2 $,
we can deduce $\lambda_3$ ...
\begin{Example}
Consider $u(x,\lambda)$ as a solution
of a differential equation
where $\lambda$ is a parameter.
\begin{tikzpicture}
\begin{axis}[
axis lines = middle,
xlabel = $x$,
ylabel = {$u(x,\lambda)$},
domain=0:3,
samples=100,
legend pos=outer north east
]
\addplot[blue, thick]{exp(-0.5*x)};
\addplot[only marks, color=red] coordinates {(1,0.606)} node[pin=180:{$u(x, \lambda_1)$}] {};
\addplot[only marks, color=orange] coordinates {(1.5,0.472)} node[pin=180:{$u(x, \tau)$}] {};
\addplot[only marks, color=pink] coordinates {(1.5,0.482)} node[pin=0:{$u(x, \lambda_1 \oplus \lambda_2)$}] {};
\addplot[only marks, color=green] coordinates {(2,0.368)} node[pin=180:{$u(x, \lambda_2)$}] {};
\end{axis}
\end{tikzpicture}
In this example, the parameter $\lambda$ affects the behavior of the solution function $u(x)$. Different values of $\lambda$ lead to different solutions, each with its own characteristic behavior. Thus, the solution is a function with a parameter $\lambda$.
\end{Example}
In this report, we will conduct a study on algebraic
structures and their relevance in data analysis,
providing information on how these structures can be
effectively applied to detect patterns and draw conclusions.\\
Our objective is a mathematical problem known
as data detection on structured surfaces or
varieties. \\
With a dataset $V$
defined on a certain surface, the challenge
arises in determining whether there exists a
discernible algebraic pattern within the data.
\\
Essentially, it's about investigating whether
there are underlying mathematical relationships
or structures governing the given dataset.
\\
This problem is crucial in various fields
such as algebraic geometry and data analysis,
where understanding these structures aids in
making predictions or drawing meaningful
conclusions from the data.
%faire est ce que tu vois
So,what is an Algebraic structure? An algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy.
Among the multiples algebraic structures, we can name:
\begin{itemize}
\item Group
\item Ring
\item Field
\item Vector space
\item .....
\end{itemize}
\begin{Example}
A simple example of a group for
addition is the additive group
of integers $ (\mathbb{Z}, +) $
satisfies the following properties
for any $ a, b, c \in \mathbb{Z} $:
\begin{itemize}
\item Closure under the addition operation: $ a + b $ is an integer.
\item Associativity: $ (a + b) + c = a + (b + c) $.
\item Existence of the identity element: There exists an element $ 0 \in \mathbb{Z} $ such that $ a + 0 = a $ for every $ a \in \mathbb{Z} $.
\item Existence of inverses: For each element $ a \in \mathbb{Z} $, there exists an element $ -a \in \mathbb{Z} $ such that $ a + (-a) = 0 $.
\item Commutativity: $ a + b = b + a $ for every $ a, b \in \mathbb{Z} $.
\end{itemize}
These properties make $ (\mathbb{Z}, +) $ a fundamental example of an additive group.
\end{Example}
\section{Objectives}
We are going to applied this concept of algebraic structure
to a dataset $V$ in this case defined on $R^2$.
\begin{figure}[h]
\centering
\begin{tikzpicture}
\begin{axis}[
axis lines = middle,
xlabel = $x$,
ylabel = {$f(x)$},
domain=-3:3,
samples=100,
]
\addplot[blue, thick]{x^3 + x^2};
\addplot[red, mark = *, only marks] coordinates {(-1,0) (1,2)};
\addplot[green, mark = *, only marks] coordinates {(2,12)};
\addplot[dashed, gray] coordinates {(-1,0) (1,2) (2,12)};
\end{axis}
\end{tikzpicture}
\caption{Graphical representation of a 1D dataset $x^3 + x^2$ }
\end{figure}
\subsection{First sub objective: Identify the Best Approch}
They are many ways to attack the problems, one is to consider a group structure on the dataset, then we can define a binary operation on the dataset such that it satisfies the group axioms.
By this way there are many variables to consider which complicate this approch.
\\
The Best way that we choose to attack the problem is to consider a function $f$ that can map the binary operations defined on $V$ to a binary operation defined on $\mathbb{R}$ that satisfy this theorem :
\\
\begin{theorem}\label{thm:1}
\rm{Let $\mathbb{R}$ be the field of real numbers and let $f: \mathbb{R} \rightarrow V$ be a one-to-one function from $\mathbb{R}$ onto a codomain $V$. If we define vector addition by
$$
x \oplus y=f\left(f^{-1}(x)+f^{-1}(y)\right)
$$
and scalar multiplication by
$$
\alpha \odot x=f\left(\alpha \cdot f^{-1}(x)\right)
$$
for all $x$ and $y$ in $V$ and all $\alpha$ in $\mathbb{R}$, then the set $V$, together with the operations $\oplus$ and $\odot$, form a vector space over the field of real numbers.
The real vector space $V$ is sometimes denoted more formally by $(V, \oplus, \odot)$.}
\end{theorem}
\begin{Example}[Trivial Example]
Let f be a function from $R$ to $Vect{(e_1)}$ such that $f(x) = x.e_1$.
we have $f^{-1}(x) = \lambda$.
we take x and y in $vect{(e_1)}$, we have \\
$x\oplus y = f(f^{-1}(x) + f^{-1}(y)) = x + y$ \\
$\alpha \odot x = f(f^{-1}(x) * \alpha) = \alpha x$
\\
$(Vect{(e_1)}, \oplus, \odot)$ is a vector space
\end{Example}
\begin{Example}[Non-Trivial Example]
Let $\beta$ be any positive real number and let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}^{*}$be
defined by $f(x)=(1 / \beta) e^x$. Then $f$ is a one-to-one
function from $\mathbb{R}$ onto the set of positive real numbers,
and $f^{-1}(x)=\ln (\beta x)$ for $x>0$.
\\
we would define vector addition and scalar multiplication by :
\\
$
x \oplus y=\frac{1}{\beta} e^{\ln (\beta x)+\ln (\beta y)}=\beta x y
$
and
$
\alpha \odot x=\frac{1}{\beta} e^{\alpha \ln (\beta x)}=\beta^{\alpha-1} x^\alpha.
$
$(R^+, \oplus, \odot)$ is a vector space
\end{Example}
\textbf{As we see this theorem based if we have a function
$f$ one-to-one and verify the two proprieties we can conclude that the dataset V is a vector space.
So, the challenge for us if we are given a set of points $V$ is it possible to
find $(\oplus,\odot,f,f^{-1})$ that satisfy the conditions of the theorem ?}
\subsection*{Second sub objective: Implementing the 2D case}
We are going to implement a 2D case of the problem, where we have a dataset $V$ defined on a 2D surface.
\\
We choose this case because, in 2D cas, we can easily evaluate the distance between two points on the dataset based on the norm defined on $\mathbb{R}$.
\\
\\
We will consider this dataset
$(\mathbf{x}, \mathbf{x}+\varepsilon \sin (\mathbf{x} / \varepsilon))$ with $\varepsilon \rightarrow 0$.
\\
Then we will try to find the best function $f$ that can map the binary operations defined on $V$ to a binary operation defined on $\mathbb{R}$ that satisfy the theorem \ref{thm:1}.
\newpage
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{./images/M.png}
\caption{$(\mathbf{x}, \mathbf{x}+\varepsilon \sin (\mathbf{x} / \varepsilon))$, $\varepsilon = 0.1$, with 2000 points, $x$ following a uniform distribution}
\end{figure}
\section{Mathematical setting}
As said in First sub-Objective, if we consider An algebraic structure like a group, this is how we attack the problems, we transform the a group axioms into a loss to minimize we can define the losses as follows:
\begin{enumerate}
\item Existence of the identity element: \[
L_1(\theta) = \sum_{(x,e) \in V \times V} (e \oplus_{\theta} x - x)^2
\]
\item Commutativity:
\[
L_2(\theta) = \sum_{(x, y) \in V \times V} (x \oplus_{\theta} y - y \oplus_{\theta} x)^2
\]
\item Associativity:
\[
L_3(\theta) = \sum_{(x, y, z) \in V \times V \times V} ((x \oplus_{\theta} y) \oplus_{\theta} z - x \oplus_{\theta} (y \oplus_{\theta} z))^2
\]
\item Existence of inverses:
\[
L_4(\theta) = \sum_{(x,y,e) \in V \times V \times V} (x \oplus_{\theta} y - e)^2
\]
\end{enumerate}
Here, $\theta$ represents the parameters of our model.
These functions $L_i(\theta)$ measure the discrepancies
between the observed and predicted values for each group
axiom, where $i = 1, 2, 3, 4$. By minimizing these functions
$L_i(\theta)$, we aim to adjust our model to be as close as
possible to the real data, ensuring that our algebraic
structure accurately satisfies the group axioms.
$$
L(\theta) = \min_{\theta} (L_1(\theta) + L_2(\theta) + L_3(\theta) + L_4(\theta))
$$
This function $L(\theta)$ represents the sum of losses
associated with each group axiom. By minimizing
this function $L(\theta)$, we aim to adjust our model so
that it optimally satisfies the four group axioms,
ensuring the accuracy and consistency of our
algebraic structure with respect to the provided data.\\
\textbf{There are many parameters to consider if we choose that way to attack the problems, like for example identify firstly the neutral element on the dataset. \\
So the Easiest way we choose is to consider the theorem to define a Vector space as stated in \ref{thm:1}}\\
Here is the approch that we will use to attack the problem using the definition based on a Vector space:
\begin{enumerate}
\item Loss for vector addition:
\[
L_1(\theta) = \sum_{(x, y) \in V \times V} \left\lVert x \oplus_{\theta} y - f_{\theta}(f_{\theta}^{-1}(x)) + (f_{\theta}^{-1}(y)) \right\rVert_{V}^2
\]
\item Loss for scalar multiplication:
\[
L_2(\theta) = \sum_{(\alpha, x) \in \mathbb{R} \times V} \left\lVert \alpha \odot_{\theta} x - f(\alpha \cdot f_{\theta}^{-1}(x)) \right\rVert_{V}^2
\]
\end{enumerate}
Function $L(\theta)$, the sum of these two functions:
\[
L(\theta) = L_1(\theta) + L_2(\theta)
\]
We precise that the norm $\left\lVert \cdot \right\rVert_{V}$ is the norm defined on the dataset $V$.
\section{Tools}
We use Neural Networks Learning to find the best couple that minimize the loss function $L(\theta)$.
We use the Pytorch library in Python to implement the algorithms and the Neural Networks Learning, and Git, slack to share and communicate on the project.
\section{Base Algorithms}
For reaching the objectives, which we have defined, here is the algorithms we implement in our projet :
The algorithms have been implemented in Python using the Pytorch library and the Neural Networks Learning.\\
\begin{enumerate}
\item \textbf{Morphism}: This class defines a morphism from
$\mathbb{R}^n$ to a space $E$ with dimension $dim_E$.
It consists of four fully connected layers, each with
a specified number of neurons. The forward function computes
the output of the morphism given an input $x$.
\item \textbf{InverseMorphism}: This class defines an inverse
of function $f: E \rightarrow \mathbb{R}^n$. It consists of
four fully connected layers, each with a specified number
of neurons. The forward function computes the output of the
inverse morphism given an input $x$.
\item \textbf{LoiBinaire}: This class defines a binary operation
between two elements $x$ and $y$ in $E$. It consists of four
fully connected layers, each with a specified number of neurons.
The forward function computes the output of the binary operation
given two inputs $x$ and $y$.
\item \textbf{LoiScalaire}:
This class defines a scalar operation between a scalar $\alpha$ and an element $x$ in $E$. A scalar operation is an operation that combines a scalar and a vector to produce a new vector. In the context of neural networks, this could mean an operation such as scalar multiplication. This class consists of four fully connected layers, each with a specified number of neurons. The forward function computes the output of the scalar operation for a scalar $\alpha$ and an input $x$. The scalar $\alpha$ is multiplied by $x$ to produce a new vector $z$, which is then passed through the layers of the network to produce the output.
\item \textbf{Vect\_space} : This class defines a vector space $E$ with dimension $\dim{E}$. It consists of a morphism, an inverse morphism, a binary operation, and a scalar operation.
\\
It contains the Train function that trains the model to minimize the loss function $L(\theta)$. It updates the network's weights to minimize the loss function, using the provided optimizer.
\end{enumerate}
\section{Numerical Experiments}
We choose to consider a dataset which is almost an affine manifold because, in this case, we can easily evaluate the distance between two points on the dataset based on the norm defined on $\mathbb{R}$. It is the first easiest way to tackle the problem and to understand the behavior of the model.\\
And also we can use the binary operations defined on the dataset to define the binary operations on $\mathbb{R}$.
\subsection{Training Data}
We consider the dataset $(\mathbf{x}, \mathbf{x}+\varepsilon \sin (\mathbf{x} / \varepsilon))$ with $\varepsilon \rightarrow 0$.
\\
The data used :
\begin{itemize}
\item $\mathbf{x}$ is randomly generated from a uniform distribution.
\item $\varepsilon = 0.1$
\item $dim_E = 2$ like the dataset is defined on a 2D,
the abscissa and the ordinate.
\item The Number of Epochs = 1000 to train the model.
\item The learning rate = 1e-3
\item The Number of Points = 2000
\end{itemize}
% -----------------------------
After, the model is trained, we have those results :
For the Losses, we have
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Epoch & $L_{1}$ & $L_{2}$ & $L = L_{1} + L_{2}$ \\
\hline
0/1000 & 79.302979 & 96.402763 & 175.705750 \\
200/1000 & 8.830682 & 12.671237 & 21.501919 \\
400/1000 & 0.064797 & 0.174934 & 0.239731 \\
600/1000 & 0.021591 & 0.010077 & 0.031668 \\
800/1000 & 0.017061 & 0.011970 & 0.029031 \\
\hline
\end{tabular}
\caption{Training results with 64 neurons per layer for the Loss}
\end{table}
% -----------------------------
% let plot the graph of the Losses par une figure
\textbf{Let plot the graph of the Losses during the training}
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{./images/losses.png}
\caption{Losses during training}
\label{fig:losses}
\end{figure}
% -----------------------------
\newpage
% -----------------------------
% let plot the graph of the dataset and the predicted dataset
We have noticed that the Loss decreases as the number of epochs increases, which indicates that the model is learning and improving its performance over time. The total loss is the sum of the two individual losses, which are also decreasing as the model is trained. This suggests that the model is effectively minimizing the loss function and optimizing the parameters to better fit the data.
\subsection{Validation Test}
It consist to test the model on a new dataset that the model has never seen before. So we choose some points belonging to a dataset (points that is not the training dataset) and we apply the binary operations defined on the dataset to verify the properties of the Vect space. \\
It means that, for two points in $V$, the Direct sum of these two points will be equal to the morphism of the sum of the inverse morphism of these two points. And for a scalar $\alpha$ and a point in $V$, the scalar multiplication of the point will be equal to the morphism of the scalar multiplication of the inverse morphism of the point.
\subsubsection{Test Data}
Let choose Ten points belonging to the Dataset: \\
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
B\_x & B\_y & C\_x & C\_y & $\alpha$ \\
\hline
0.133921 & 0.231251 & -0.364604 & -0.316272 & 0.131015 \\
-0.135106 & -0.232701 & -0.183459 & -0.280000 & 0.632417 \\
-0.075604 & -0.144208 & 0.518957 & 0.430128 & -0.094283 \\
-0.272498 & -0.312965 & -0.355346 & -0.315314 & 1.490005 \\
-0.053795 & -0.105033 & 0.319357 & 0.314162 & -0.585686 \\
0.038281 & 0.075634 & 0.252877 & 0.310395 & 0.982973 \\
0.517463 & 0.427957 & -0.361297 & -0.315886 & -1.826494 \\
-0.249884 & -0.309824 & 0.505564 & 0.411397 & -1.387667 \\
0.166805 & 0.266332 & 0.296044 & 0.314060 & -1.156715 \\
0.345609 & 0.314675 & -0.408402 & -0.327503 & -0.028152 \\
\hline
\end{tabular}
\caption{Points belonging to the dataset}
\end{table}
% -----------------------------
\newpage
\subsubsection{First Property of theorem}
After we apply the binary operations trained by the model, we obtain: \\
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$(x_i, y_i)$ & $f_{\theta}(f_{\theta}^{-1}(B) + f_{\theta}^{-1}(C))$ & $B\oplus_{\theta} C$ & $Erreur L^2$ & $Erreur inf$ \\
\hline
$(x_1, y_1)$ & $(0.025816463, -0.064952835)$ & $(0.027578719, -0.06542145)$ & $1.8e-03$ & $1.5e-03$ \\
$(x_2, y_2)$ & $(0.025946498, -0.06484896)$ & $(0.025081158, -0.068941236)$ & $4.2e-03$ & $2.7e-03$ \\
$(x_3, y_3)$ & $(0.019929841, -0.070546366)$ & $(0.019148044, -0.07449238)$ & $4.0e-03$ & $3.8e-03$ \\
$(x_4, y_4)$ & $(0.028739408, -0.062192287)$ & $(0.029816508, -0.06403735)$ & $2.1e-03$ & $1.3e-03$ \\
$(x_5, y_5)$ & $(0.021517947, -0.06903623)$ & $(0.021849744, -0.07182622)$ & $2.8e-03$ & $1.6e-03$ \\
$(x_6, y_6)$ & $(0.021567993, -0.068980195)$ & $(0.023057297, -0.07014613)$ & $1.9e-03$ & $1.5e-03$ \\
$(x_7, y_7)$ & $(0.02241145, -0.06818917)$ & $(0.023231708, -0.07093868)$ & $2.9e-03$ & $2.7e-03$ \\
$(x_8, y_8)$ & $(0.021432638, -0.06912259)$ & $(0.020650879, -0.072933406)$ & $3.9e-03$ & $3.8e-03$ \\
$(x_9, y_9)$ & $(0.02023638, -0.070240326)$ & $(0.02151636, -0.071243554)$ & $1.6e-03$ & $1.3e-03$ \\
$(x_{10}, y_{10})$ & $(0.024316281, -0.06637937)$ & $(0.02585955, -0.067992836)$ & $2.2e-03$ & $1.6e-03$ \\
\hline
\end{tabular}
\end{center}
% -----------------------------
Let see illustrate the results by a figure :
\begin{figure}[h]
\centering
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/1.png}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/2.png}
\end{minipage}
\end{figure}
\begin{figure}[h]
\centering
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/3.png}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/4.png}
\end{minipage}
\end{figure}
\newpage
\subsubsection{Second Property of theorem}
Doing the same thing for the scalar multiplication, we have the following results:\\
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$(x_i, y_i)$ & $ \alpha \odot_{\theta} B$ & $f_{\theta}(\alpha . f_{\theta}^{-1}(B))$ & $L^2 erreur$ & inf erreur \\
\hline
$(x_1, y_1)$ & [-0.048860528, 0.040740483] & [-0.047611155, 0.0386376] & 2.4e-03 & 2.1e-03 \\
$(x_2, y_2)$ & [-0.048876982, 0.041265447] & [-0.047042675, 0.03864859] & 3.2e-03 & 2.6e-03 \\
$(x_3, y_3)$ & [-0.048824713, 0.042872474] & [-0.047174696, 0.040685885] & 2.7e-03 & 2.2e-03 \\
$(x_4, y_4)$ & [-0.04915207, 0.035144657] & [-0.049222343, 0.033644445] & 1.5e-03 & 1.5e-03 \\
$(x_5, y_5)$ & [-0.04535631, 0.04647644] & [-0.04584642, 0.04529673] & 1.3e-03 & 1.2e-03 \\
$(x_6, y_6)$ & [-0.04687567, 0.05224476] & [-0.044194147, 0.049510986] & 3.8e-03 & 2.7e-03 \\
$(x_7, y_7)$ & [-0.048862994, 0.04280009] & [-0.047243368, 0.0406532] & 2.7e-03 & 2.1e-03 \\
$(x_8, y_8)$ & [-0.047992736, 0.044094473] & [-0.04674241, 0.04209003] & 2.4e-03 & 2.0e-03 \\
$(x_9, y_9)$ & [-0.04918803, 0.03398081] & [-0.049555883, 0.032617047] & 1.4e-03 & 1.4e-03 \\
$(x_{10}, y_{10})$ & [-0.04976673, 0.038385503] & [-0.048322663, 0.036165632] & 2.6e-03 & 2.2e-03 \\
\hline
\end{tabular}
\\
Here is the illustration for the scalar multiplication :
\begin{figure}[h]
\centering
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/alpha1.png}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/alpha2.png}
\end{minipage}
\end{figure}
\begin{figure}[h]
\centering
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/alpha3.png}
\end{minipage}%
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics[width=0.9\linewidth]{./images/alpha4.png}
\end{minipage}
\end{figure}
\textbf{As conclusion, we see that the error between the Direct Sum and the morphism of the sum of the inverse morphism is to ordre 3, and the error between the scalar multiplication and the morphism of the scalar multiplication of the inverse morphism is also to ordre 3 . This means that the model is effectively learning the properties of the vector space and accurately reproducing the binary operations defined on the dataset.\\
So we conclude that $(V,\oplus,\odot)$ is a vector space with an algebraic structure.}
\section{Conclusion}
The project provides a comprehensive
exploration of algebraic structures and
their relevance in data analysis,
offering insights into how these
structures can be effectively applied
to detect patterns and derive meaningful
conclusions from datasets. Through Python
implementation and testing, the project
demonstrates practical approaches to
optimize algebraic structures for
improved accuracy and performance
in various applications. However, there is still a
challenge to continue working to generalize the latter to
differential equation, as we discussed in the introduction.
\section{References}
\begin{itemize}
\item \url{https://en.wikipedia.org/wiki/Algebraic_structure}
\item \url{https://pytorch.org/docs/stable/torch.html}
\item Thomas A. Farmer, Article : The College Mathematics Journal, Miami University, Oxford, OH 45056-1602, USA.
\end{itemize}
\end{document}