-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsaasgp.py
198 lines (164 loc) · 7.95 KB
/
saasgp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math
import time
from functools import partial
import jax.numpy as jnp
import jax.random as random
import numpy as np
import numpyro
import numpyro.distributions as dist
from jax import jit, vmap
from jax.scipy.linalg import cho_factor, cho_solve, solve_triangular
from numpyro.diagnostics import summary
from numpyro.infer import MCMC, NUTS
from util import chunk_vmap
root_five = math.sqrt(5.0)
five_thirds = 5.0 / 3.0
# compute diagonal component of kernel
def kernel_diag(var, noise, jitter=1.0e-6, include_noise=True):
if include_noise:
return var + noise + jitter
else:
return var + jitter
# X, Z have shape (N_X, P) and (N_Z, P)
@partial(jit, static_argnums=(5,))
def rbf_kernel(X, Z, var, inv_length_sq, noise, include_noise):
deltaXsq = jnp.square(X[:, None, :] - Z) * inv_length_sq # N_X N_Z P
k = var * jnp.exp(-0.5 * jnp.sum(deltaXsq, axis=-1))
if include_noise:
k = k + (noise + 1.0e-6) * jnp.eye(X.shape[-2])
return k # N_X N_Z
# X, Z have shape (N_X, P) and (N_Z, P)
@partial(jit, static_argnums=(5,))
def matern_kernel(X, Z, var, inv_length_sq, noise, include_noise):
deltaXsq = jnp.square(X[:, None, :] - Z) * inv_length_sq # N_X N_Z P
dsq = jnp.sum(deltaXsq, axis=-1) # N_X N_Z
exponent = root_five * jnp.sqrt(jnp.clip(dsq, a_min=1.0e-12))
poly = 1.0 + exponent + five_thirds * dsq
k = var * poly * jnp.exp(-exponent)
if include_noise:
k = k + (noise + 1.0e-6) * jnp.eye(X.shape[-2])
return k # N_X N_Z
class SAASGP(object):
"""
This class contains the necessary modeling and inference code to fit a gaussian process with a SAAS prior.
See below for arguments.
"""
def __init__(
self,
alpha=0.1, # controls sparsity
num_warmup=512, # number of HMC warmup samples
num_samples=256, # number of post-warmup HMC samples
max_tree_depth=7, # max tree depth used in NUTS
num_chains=1, # number of MCMC chains
thinning=16, # thinning > 1 reduces the computational cost at the risk of less robust model inferences
verbose=True, # whether to use stdout for verbose logging
observation_variance=0.0, # observation variance to use; this scalar value is inferred if observation_variance==0.0
kernel="matern", # GP kernel to use (matern or rbf)
):
if alpha <= 0.0:
raise ValueError("The hyperparameter alpha should be positive.")
if observation_variance < 0.0:
raise ValueError("The hyperparameter observation_variance should be non-negative.")
if kernel not in ["matern", "rbf"]:
raise ValueError("Allowed kernels are matern and rbf.")
for i in [num_warmup, num_samples, max_tree_depth, num_chains, thinning]:
if not isinstance(i, int) or i <= 0:
raise ValueError(
"The hyperparameters num_warmup, num_samples, max_tree_depth, "
+ "num_chains, and thinning should be positive integers."
)
self.alpha = alpha
self.num_warmup = num_warmup
self.num_samples = num_samples
self.max_tree_depth = max_tree_depth
self.num_chains = num_chains
self.kernel = rbf_kernel if kernel == "rbf" else matern_kernel
self.thinning = thinning
self.verbose = verbose
self.observation_variance = observation_variance
self.learn_noise = observation_variance == 0.0
self.Ls = None
# define the surrogate model. users who want to modify e.g. the prior on the kernel variance
# should make their modifications here.
def model(self, X, Y):
N, P = X.shape
var = numpyro.sample("kernel_var", dist.LogNormal(0.0, 10.0))
noise = (
numpyro.sample("kernel_noise", dist.LogNormal(0.0, 10.0)) if self.learn_noise else self.observation_variance
)
tausq = numpyro.sample("kernel_tausq", dist.HalfCauchy(self.alpha))
# note we use deterministic to reparameterize the geometry
inv_length_sq = numpyro.sample("_kernel_inv_length_sq", dist.HalfCauchy(jnp.ones(P)))
inv_length_sq = numpyro.deterministic("kernel_inv_length_sq", tausq * inv_length_sq)
k = self.kernel(X, X, var, inv_length_sq, noise, True)
numpyro.sample("Y", dist.MultivariateNormal(loc=jnp.zeros(N), covariance_matrix=k), obs=Y)
# run gradient-based NUTS MCMC inference
def run_inference(self, rng_key, X, Y):
start = time.time()
kernel = NUTS(self.model, max_tree_depth=self.max_tree_depth)
mcmc = MCMC(
kernel,
num_warmup=self.num_warmup,
num_samples=self.num_samples,
num_chains=self.num_chains,
progress_bar=self.verbose,
)
mcmc.run(rng_key, X, Y)
flat_samples = mcmc.get_samples(group_by_chain=False)
chain_samples = mcmc.get_samples(group_by_chain=True)
flat_summary = summary(flat_samples, prob=0.90, group_by_chain=False)
if self.verbose:
rhat = flat_summary["kernel_inv_length_sq"]["r_hat"]
print(
"[kernel_inv_length_sq] r_hat min/max/median: {:.3f} {:.3f} {:.3f}".format(
np.min(rhat), np.max(rhat), np.median(rhat)
)
)
mcmc.print_summary(exclude_deterministic=False)
print("\nMCMC elapsed time:", time.time() - start)
return chain_samples, flat_samples, flat_summary
# compute cholesky factorization of kernel matrices (necessary to compute posterior predictions)
def compute_choleskys(self, chunk_size=8):
def _cholesky(var, inv_length_sq, noise):
k_XX = self.kernel(self.X_train, self.X_train, var, inv_length_sq, noise, True)
return (cho_factor(k_XX, lower=True)[0],)
n_samples = (self.num_samples * self.num_chains) // self.thinning
vmap_args = (
self.flat_samples["kernel_var"][:: self.thinning],
self.flat_samples["kernel_inv_length_sq"][:: self.thinning],
self.flat_samples["kernel_noise"][:: self.thinning]
if self.learn_noise
else self.observation_variance * jnp.ones(n_samples),
)
self.Ls = chunk_vmap(_cholesky, vmap_args, chunk_size=chunk_size)[0]
# make predictions at test points X_test for a single set of SAAS hyperparameters
def predict(self, rng_key, X, Y, X_test, L, var, inv_length_sq, noise):
k_pX = self.kernel(X_test, X, var, inv_length_sq, noise, False)
mean = jnp.matmul(k_pX, cho_solve((L, True), Y))
k_pp = kernel_diag(var, noise, include_noise=True)
L_kXp = solve_triangular(L, jnp.transpose(k_pX), lower=True)
diag_cov = k_pp - (L_kXp * L_kXp).sum(axis=0)
return mean, diag_cov
# fit SAASGP to training data
def fit(self, X_train, Y_train, seed=0):
self.X_train, self.Y_train = X_train.copy(), Y_train.copy()
self.rng_key_hmc, self.rng_key_predict = random.split(random.PRNGKey(seed), 2)
self.chain_samples, self.flat_samples, self.summary = self.run_inference(self.rng_key_hmc, X_train, Y_train)
return self
# compute predictions at X_test using inferred SAAS hyperparameters
def posterior(self, X_test):
if self.Ls is None:
self.compute_choleskys(chunk_size=8)
n_samples = (self.num_samples * self.num_chains) // self.thinning
vmap_args = (
random.split(self.rng_key_predict, n_samples),
self.flat_samples["kernel_var"][:: self.thinning],
self.flat_samples["kernel_inv_length_sq"][:: self.thinning],
self.flat_samples["kernel_noise"][:: self.thinning] if self.learn_noise else 1e-6 * jnp.ones(n_samples),
self.Ls,
)
predict = lambda rng_key, var, inv_length_sq, noise, L: self.predict(
rng_key, self.X_train, self.Y_train, X_test, L, var, inv_length_sq, noise
)
mean, var = chunk_vmap(predict, vmap_args, chunk_size=8)
return mean, var