-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsaasbo.py
190 lines (158 loc) · 6.86 KB
/
saasbo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import time
import warnings
from copy import deepcopy
import jax.lax as lax
import jax.numpy as jnp
import numpy as np
import numpyro
from jax import value_and_grad
from jax.scipy.stats import norm
from numpyro.util import enable_x64
from scipy.optimize import fmin_l_bfgs_b
from scipy.stats import qmc
from saasgp import SAASGP
def ei(x, y_target, gp, xi=0.0):
# Expected Improvement (EI)
mu, var = gp.posterior(x)
std = jnp.maximum(jnp.sqrt(var), 1e-6)
improve = y_target - xi - mu
scaled = improve / std
cdf, pdf = norm.cdf(scaled), norm.pdf(scaled)
exploit = improve * cdf
explore = std * pdf
values = jnp.nan_to_num(exploit + explore, nan=0.0)
return values.mean(axis=0)
def ei_grad(x, y_target, gp, xi=0.0):
# Gradient of EI
return ei(x, y_target, gp, xi).sum()
def optimize_ei(gp, y_target, xi=0.0, num_restarts_ei=5, num_init=5000):
# Helper function for optimizing EI
def negative_ei_and_grad(x, y_target, gp, xi):
# Compute EI and its gradient and then flip the signs since L-BFGS-B minimizes
x = jnp.array(x.copy())[None, :]
ei_val, ei_val_grad = value_and_grad(ei_grad)(x, y_target, gp, xi)
return -1 * ei_val.item(), -1 * np.array(ei_val_grad)
dim = gp.X_train.shape[-1]
with warnings.catch_warnings(record=True): # Suppress qmc.Sobol UserWarning
X_rand = qmc.Sobol(dim, scramble=True).random(num_init)
# Make sure x_best is in the set of candidate EI maximizers
x_best = gp.X_train[gp.Y_train.argmin(), :]
X_rand[0, :] = np.clip(x_best + 0.001 * np.random.randn(1, dim), a_min=0.0, a_max=1.0)
X_rand = jnp.array(X_rand)
ei_rand = ei(X_rand, y_target, gp)
_, top_inds = lax.top_k(ei_rand, num_restarts_ei)
X_init = X_rand[top_inds, :]
x_best, y_best = None, -float("inf")
for x0 in X_init:
x, fx, _ = fmin_l_bfgs_b(
func=negative_ei_and_grad,
x0=x0,
fprime=None,
bounds=[(0.0, 1.0) for _ in range(dim)],
args=(y_target, gp, 0.0),
maxfun=100, # this limits computational cost
)
fx = -1 * fx # Back to maximization
if fx > y_best:
x_best, y_best = x.copy(), fx
return x_best
def run_saasbo(
f,
lb,
ub,
max_evals,
num_init_evals,
seed=None,
alpha=0.1,
num_warmup=512,
num_samples=256,
thinning=16,
num_restarts_ei=5,
kernel="rbf",
device="cpu",
):
"""
Run SAASBO and approximately minimize f.
Arguments:
f: function to minimize. should accept a D-dimensional np.array as argument. the input domain of f
is assumed to be the D-dimensional rectangular box bounded by lower and upper bounds lb and ub.
lb: D-dimensional vector of lower bounds (np.array)
ub: D-dimensional vector of upper bounds (np.array)
max_evals: The total evaluation budget
num_init_evals: The initial num_init_evals query points are chosen at random from the input
domain using a Sobol sequence. must satisfy num_init_evals < max_evals.
seed: Random number seed (int or None); defaults to None
alpha: Positive float that controls the level of sparsity (smaller alpha => more sparsity).
defaults to alpha = 0.1.
num_warmup: The number of warmup samples to use in HMC inference. defaults to 512.
num_samples: The number of post-warmup samples to use in HMC inference. defaults to 256.
thinning: Positive integer that controls the fraction of posterior hyperparameter samples
that are used to compute the expected improvement. for example thinning==2 will use every
other sample. defaults to no thinning (thinning==1).
num_restarts_ei: The number of restarts for L-BFGS-B when optimizing EI.
kernel: By default saasbo uses rbf, but matern is also supported.
device: Whether to use cpu or gpu. defaults to "cpu".
Returns:
X: np.array containing all query points (of which there are max_evals many)
Y: np.array containing all observed function evaluations (of which there are max_evals many)
"""
if max_evals <= num_init_evals:
raise ValueError("Must choose max_evals > num_init_evals.")
if lb.shape != ub.shape or lb.ndim != 1:
raise ValueError("The lower/upper bounds lb and ub must have the same shape and be D-dimensional vectors.")
if alpha <= 0.0:
raise ValueError("The hyperparameter alpha must be positive.")
if device not in ["cpu", "gpu"]:
raise ValueError("The device must be cpu or gpu.")
numpyro.set_platform(device)
enable_x64()
numpyro.set_host_device_count(1)
max_exceptions = 3
num_exceptions = 0
# Initial queries are drawn from a Sobol sequence
with warnings.catch_warnings(record=True): # suppress annoying qmc.Sobol UserWarning
X = qmc.Sobol(len(lb), scramble=True, seed=seed).random(num_init_evals)
Y = np.array([f(lb + (ub - lb) * x) for x in X])
print("Starting SAASBO optimization run.")
print(f"First {num_init_evals} queries drawn at random. Best minimum thus far: {Y.min().item():.3f}")
while len(Y) < max_evals:
print(f"=== Iteration {len(Y)} ===", flush=True)
# standardize training data
train_Y = (Y - Y.mean()) / Y.std()
y_target = train_Y.min().item()
# If for whatever reason we fail to return a query point above we choose one at random from the domain
try:
start = time.time()
# define GP with SAAS prior
gp = SAASGP(
alpha=alpha,
num_warmup=num_warmup,
num_samples=num_samples,
max_tree_depth=6,
num_chains=1,
thinning=thinning,
verbose=False,
observation_variance=1e-6,
kernel=kernel,
)
# fit SAAS GP to training data
gp = gp.fit(X, train_Y)
print(f"GP fitting took {time.time() - start:.2f} seconds")
start = time.time()
# do EI optimization using LBFGS
x_next = optimize_ei(gp=gp, y_target=y_target, xi=0.0, num_restarts_ei=num_restarts_ei, num_init=5000)
print(f"Optimizing EI took {time.time() - start:.2f} seconds")
except Exception:
num_exceptions += 1
if num_exceptions <= max_exceptions:
print("WARNING: Exception was raised, using a random point.")
x_next = np.random.rand(len(lb))
else:
raise RuntimeException("ERROR: Maximum number of exceptions raised!")
# transform to original coordinates
y_next = f(lb + (ub - lb) * x_next)
X = np.vstack((X, deepcopy(x_next[None, :])))
Y = np.hstack((Y, deepcopy(y_next)))
print(f"Observed function value: {y_next:.3f}, Best function value seen thus far: {Y.min():.3f}")
del gp # Free memory
return lb + (ub - lb) * X, Y