Skip to content

Latest commit

 

History

History
114 lines (95 loc) · 4.05 KB

README.md

File metadata and controls

114 lines (95 loc) · 4.05 KB

LiteNet

LiteNet is a neural network framework written in C++ with 0 external dependencies. It is designed to be easy to use, with a simple and intuitive API based on the Keras and PyTorch libraries. All linear algebra operations are implemented from scratch with the C++ standard library.

This project is solely for educational purposes. It is not intended to be used in production.

LiteNet Model Training

Motivation

Why make a neural network framework? Why in C++? Why no dependencies?

  1. Why make a neural network framework? I wanted to learn more about neural networks and how they work under the hood (backpropagation, optimization algorithms, etc.).
  2. Why in C++? I wanted to learn more about C++ and how to write efficient code. C++ is a powerful language that allows for low-level control and high performance.
  3. Why no dependencies? I wanted to challenge myself to implement everything from scratch. This includes linear algebra operations (matrix multiplication, element-wise operations, etc.), activation functions, loss functions, optimizers, etc.

Example Usage (handwritten digit recognition)

For the full example, see src/example_mnist.cpp.

Model architecture:

  • Input layer (784 neurons)
  • Dense layer (256 neurons, ReLU activation)
  • Dense layer (128 neurons, ReLU activation)
  • Dense layer (64 neurons, ReLU activation)
  • Dense layer (32 neurons, ReLU activation)
  • Output layer (10 neurons, Softmax activation)
  • Loss function: Categorical Cross Entropy
  • Optimizer: Adam
// Build
const double learningRate = 0.0001;
litenet::Model model;
model.add(std::make_unique<litenet::layers::Dense>(784, 256, "relu", std::make_unique<litenet::initializers::HeUniform>()));
model.add(std::make_unique<litenet::layers::Dense>(256, 128, "relu", std::make_unique<litenet::initializers::HeUniform>()));
model.add(std::make_unique<litenet::layers::Dense>(128, 64, "relu", std::make_unique<litenet::initializers::HeUniform>()));
model.add(std::make_unique<litenet::layers::Dense>(64, 32, "relu", std::make_unique<litenet::initializers::HeUniform>()));
model.add(std::make_unique<litenet::layers::Dense>(32, 10, "softmax", std::make_unique<litenet::initializers::GlorotUniform>()));
model.compile("categorical_crossentropy", std::make_unique<litenet::optimizers::Adam>(learningRate));

// Train
const int epochs = 8;
const int batchSize = 128;
model.fit(trainingInputs, trainingTargets, epochs, batchSize, validationInputs, validationTargets);

// Predict
litenet::Matrix predictions = model.predict(inputs);

// Evaluate
std::vector<double> results = model.evaluate(testingInputs, testingTargets);
std::cout << "Loss: " << results[0] << std::endl;
std::cout << "Accuracy: " << results[1] << std::endl;

Results: (on MNIST dataset: 50,000 training samples, 10,000 validation samples, 10,000 testing samples)

Epoch 1/8 | loss: 0.836841 | val_loss: 0.31251
Epoch 2/8 | loss: 0.269037 | val_loss: 0.19455
Epoch 3/8 | loss: 0.202645 | val_loss: 0.165277
Epoch 4/8 | loss: 0.1673 | val_loss: 0.147121
Epoch 5/8 | loss: 0.14387 | val_loss: 0.133752
Epoch 6/8 | loss: 0.128119 | val_loss: 0.131927
Epoch 7/8 | loss: 0.118322 | val_loss: 0.128091
Epoch 8/8 | loss: 0.111184 | val_loss: 0.128207

Loss: 0.136428
Accuracy: 0.9364

Features

  • Layers
    • Dense
    • Conv2D
    • MaxPooling2D
    • Flatten
    • Dropout
  • Activation Functions
    • ReLU
    • Leaky ReLU
    • Sigmoid
    • Tanh
    • Softmax
  • Loss Functions
    • Mean Squared Error
    • Mean Absolute Error
    • Binary Cross Entropy
    • Categorical Cross Entropy
  • Optimizers
    • Stochastic Gradient Descent (mini-batch)
    • Adam
    • AdamW
    • RMSprop
    • Adagrad
  • Metrics
    • Accuracy
    • Precision
    • Recall
    • F1 Score
  • Initializers
    • Random Normal
    • Random Uniform
    • Glorot Normal
    • Glorot Uniform
    • He Normal
    • He Uniform
    • Zeros
    • Ones
  • Regularizers
    • L1
    • L2