forked from galagaking/ttn_nodeworkshop
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ttn_temphumi_battery.ino
305 lines (275 loc) · 9.68 KB
/
ttn_temphumi_battery.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/*******************************************************************************
* Code adapted for the Node Building Workshop using a modified LoraTracker board
*
*
*
*
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example will send Temperature and Humidity
* using frequency and encryption settings matching those of
* the The Things Network. Application will 'sleep' 7x8 seconds (56 seconds)
*
* This uses OTAA (Over-the-air activation), where where a DevEUI and
* application key is configured, which are used in an over-the-air
* activation procedure where a DevAddr and session keys are
* assigned/generated for use with all further communication.
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <avr/sleep.h>
#include <avr/wdt.h>
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "LowPower.h"
#include <Wire.h>
#include "i2c.h"
#include "i2c_SI7021.h"
SI7021 si7021;
#include <Arduino.h>
int sleepcycles = 7; // every sleepcycle will last 8 secs, total sleeptime will be sleepcycles * 8 sec
bool joined = false;
bool sleeping = false;
#define LedPin 10 // pin 13 LED is not used, because it is connected to the SPI port
#define BatteryThreshold 320 // depending on voltage divider and experiments
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t DEVEUI[8] = { };
static const u1_t APPEUI[8] = { };
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t APPKEY[16] = { };
// provide APPEUI (8 bytes, LSBF)
void os_getArtEui (u1_t* buf) {
memcpy(buf, APPEUI, 8);
}
// provide DEVEUI (8 bytes, LSBF)
void os_getDevEui (u1_t* buf) {
memcpy(buf, DEVEUI, 8);
}
// provide APPKEY key (16 bytes)
void os_getDevKey (u1_t* buf) {
memcpy(buf, APPKEY, 16);
}
static osjob_t sendjob;
static osjob_t initjob;
// Pin mapping is hardware specific.
// Pin mapping
const lmic_pinmap lmic_pins = {
.nss = 8,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {2,5, LMIC_UNUSED_PIN}, //DIO0 and DIO1 connected
};
void onEvent (ev_t ev) {
int i,j;
switch (ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
digitalWrite(LedPin,LOW);
// after Joining a job with the values will be sent.
joined = true;
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
// Re-init
os_setCallback(&initjob, initfunc);
break;
case EV_TXCOMPLETE:
sleeping = true;
if (LMIC.dataLen) {
// data received in rx slot after tx
// if any data received, a LED will blink
// this number of times, with a maximum of 10
Serial.print(F("Data Received: "));
Serial.println(LMIC.frame[LMIC.dataBeg],HEX);
i=(LMIC.frame[LMIC.dataBeg]);
// i (0..255) can be used as data for any other application
// like controlling a relay, showing a display message etc.
if (i>10){
i=10; // maximum number of BLINKs
}
for(j=0;j<i;j++)
{
digitalWrite(LedPin,HIGH);
delay(200);
digitalWrite(LedPin,LOW);
delay(400);
}
}
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
delay(50); // delay to complete Serial Output before Sleeping
// Schedule next transmission
// next transmission will take place after next wake-up cycle in main loop
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j) {
byte buffer[2];
float humi,temp;
int16_t t_value, h_value, s_value;
si7021.getHumidity(humi);
si7021.getTemperature(temp);
si7021.triggerMeasurement();
// getting sensor values
Serial.print(F("TEMP: "));
Serial.print(temp);
Serial.print(F(" HUMI: "));
Serial.print(humi);
temp = constrain(temp,-24,40); //temp in range -24 to 40 (64 steps)
humi=constrain(humi,20,100); //humi in range 20 to 100 (80 steps)
int sensorValue = analogRead(A0); // battery voltage
// print out the value you read:
Serial.print(F(" Battery: "));
Serial.println(sensorValue);
// Vout = Vin * (R2/(R1+R2))
// Vout = Vin * (4700/(100000+4700)), 0.135V - 3V battery
// Vout = Vin * (10000/(100000+10000)), 0,273V - 3V battery
// Vout = Vin * (11000/(91000+11000)), 0,323V - 3V battery
// INTERNAL: 1.1V -> 0.001V per count
// 3V battery -> 0.135V -> 135 (4k7 on R2)
// 3V battery -> 0.273V -> 273 (10K on R2)
// 3V battery -> 0.324V -> 324 (11K/91K)
t_value=int16_t((temp*(100/6.25)+2400/6.25)); //0.0625 degree steps with offset
// no negative values
Serial.print(F("decoded TEMP: "));
Serial.print(t_value,HEX);
h_value=int16_t((humi-20)/5); //5% steps, offset 20.
Serial.print(F(" decoded HUMI: "));
Serial.print(h_value,HEX);
s_value=(h_value<<10) + t_value; // putting the bits in the right place
Serial.print(F(" decoded sent: "));
Serial.println(s_value,HEX);
buffer[0]=s_value&0xFF; //lower byte
buffer[1]=s_value>>8; //higher byte
if (sensorValue>BatteryThreshold)
{
Serial.println(F("Battery OK"));
}
else
{
Serial.println(F("Battery LOW"));
buffer[1]=buffer[1]+0x80; //warning in bit 15.
}
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, (uint8_t*) buffer, 2 , 0);
Serial.println(F("Sending: "));
}
}
// initial job
static void initfunc (osjob_t* j) {
// reset MAC state
LMIC_reset();
// start joining
LMIC_startJoining();
// init done - onEvent() callback will be invoked...
}
void setup()
{
Serial.begin(115200);
Serial.println(F("Starting"));
Serial.print(F("Probe SI7021: "));
if (si7021.initialize()) Serial.println(F("Sensor found!"));
else
{
Serial.println(F("Sensor missing"));
while(1) {}; // Program will stop if there is no sensor
}
analogReference(INTERNAL); //reference will be 1,1V internal on 3.3V Arduino
// LED is connected to pin 10, if this port is NOT set as output before
// SPI initialization, it will be used as SS (Slave Select) and controlled by the SPI module
pinMode(LedPin, OUTPUT);
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
os_setCallback(&initjob, initfunc);
LMIC_reset();
}
void loop()
{
// start OTAA JOIN
if (joined==false)
{
os_runloop_once();
}
else
{
do_send(&sendjob); // Sent sensor values
while(sleeping == false)
{
os_runloop_once();
}
sleeping = false;
for (int i=0;i<sleepcycles;i++)
{
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); //sleep 8 seconds
}
}
digitalWrite(LedPin,((millis()/100) % 2) && (joined==false)); // only blinking when joining and not sleeping
}