-
Notifications
You must be signed in to change notification settings - Fork 0
/
firstdoc.py
36 lines (29 loc) · 1.01 KB
/
firstdoc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
print("suup")
import pandas as pd
import numpy as np
import random as rnd
# try doing this? import matplotlib as mpl
# visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
combine = [train_df, test_df]
print(train_df.columns.values)
# preview the data
#nice job kent
#here's why it needed to be moved: ../input/'train.csv' takes us up a level,
# so we would've need to go up a level and have a folder named input (per
#the source code) where train.csv
train_df.head()
print("working?")
print("Did the change come through?")