-
Notifications
You must be signed in to change notification settings - Fork 0
/
fineweb-run.py
521 lines (400 loc) · 19.7 KB
/
fineweb-run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# DDP
import os
import math
import numpy as np
import tiktoken
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
import torch.distributed as dist
import hellaswag
from hellaswag import iterate_examples, render_example
torch.set_float32_matmul_precision('high')
ddp = int(os.environ.get('RANK', -1)) != -1 # to check if this is a ddp run
if ddp:
print('\nDDP==============')
assert torch.cuda.is_available(), "CUDA NOT AVAILABLE!"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(device)
master_process = ddp_rank == 0
else:
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = 'mps'
def get_most_likely_row(tokens, mask, logits):
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred_norm = avg_loss.argmin().item()
return pred_norm
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
n_head = config.n_head
n_embd = config.n_embd
assert n_embd % n_head == 0
# query, key, value prjections all combined
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection, after `v` is already multiplied with attention_scores
self.c_proj = nn.Linear(n_embd, n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
block_size = config.block_size
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_embd = n_embd
self.n_head = n_head
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
# total dim = n_head * head_size
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# final-> bs, n_heads, seq_len, mini-n_head_embd
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# print(f"shape of q: {q.shape}... shape of k : {k.shape}")
# attn = (q @ k.transpose(-2, -1)) / (math.sqrt(k.shape[-1]))
#
# # apply masked fill at places where mask ==0, remember tril is lower triangle
# attn = attn.masked_fill(mask=self.bias[:, :, :T, :T] == 0, value=float('-inf'))
#
# attn = F.softmax(attn, dim=-1)
#
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # Flash attention
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
y = y.transpose(1, 2).contiguous().view(B, T, C)
# out projection, B, T, C -> B, T, C
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weights = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size() # batch , seq_len
# check if incoming seq_len of idx is within limits
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
# forward for token and position encodings
# shape (T)
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
x = pos_emb + token_emb
# now forward through transformer blocks
for block in self.transformer.h:
x = block(x)
# pass through final layernorm
x = self.transformer.ln_f(x)
# pass through final LM_HEAD
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
@dataclass
class GPTConfig:
block_size: int = 1024 # this is max sequence len
vocab_size: int = 50304 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
n_layer: int = 12 # number of layers
n_head: int = 12 # total number of attention heads
n_embd: int = 768 # embedding dimension
def load_tokens(filename):
np_tokens = np.load(filename)
torch_tokens = torch.tensor(np_tokens, dtype=torch.long)
return torch_tokens
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes, split):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
# get shard filenames
data_root = 'edu_fineweb10B'
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for the provided split: {split}"
if master_process:
print(f"\nFound {len(shards)} for split {split}")
self.reset()
def reset(self):
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
x = buf[:-1].view(B, T)
y = buf[1:].view(B, T)
# now each advancement is by B*T * total processes as we slide to new window to fetch New Tokens,
# i.e. moving by an entire chunk of window at a time
self.current_position += (B * T * self.num_processes)
# now check if loading next batch leads to out of bounds here then move to next shard
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(filename=self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
return x, y
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'mps' if hasattr(torch.backends, 'mps') and
torch.backends.mps.is_available() else 'cpu')
model = GPT(GPTConfig()).to(device=device)
to_compile = False
if to_compile:
model = torch.compile(model, mode='default')
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model
optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
total_batch_size = 544288 # 2**19 = 5,24,288, tokens
B = 14
T = 1024
train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split='train')
val_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split='val')
enc = tiktoken.get_encoding('gpt2')
gradient_accumulation_steps = total_batch_size // (B * T * ddp_world_size)
if master_process:
print(f"\nTotal effective batch size: {total_batch_size}")
print(f"\nGrad accumulation steps: {gradient_accumulation_steps}")
max_lr = 6e-4 * 3
min_lr = max_lr * 0.15
warmup_steps = 100 # 715 # GPT3 paper warms up LR over 375 million tokens ; 375e6/2^19 = 715.2
max_steps = 5000 # 19_703 # steps result of 10^9/2^19 (2^19 tokens from total_batch_size and 10^9 tokens in fineweb dataset)
def get_lr(it):
if it < warmup_steps:
return max_lr * (it + 1) / warmup_steps
if it > max_steps:
return min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, "log.txt")
with open(log_file, 'w') as f:
pass
for step in range(max_steps):
t0 = time.time()
last_step = (step == max_steps - 1)
if step % 500 == 0 or last_step:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
if master_process:
print(f"validation loss: {val_loss_accum.item():.4f}")
with open(log_file, "a") as f:
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
if step > 0 and (step % 500 == 0 or last_step):
# save model checkpoints
checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
checkpoint = {
'model': raw_model.state_dict(),
'config': raw_model.config,
'step': step,
'val_loss': val_loss_accum.item()
}
torch.save(checkpoint, checkpoint_path)
# generate some stuff once in a while
if (step > 1 and step % 500 == 0) or last_step:
model.eval()
num_return_sequences = 3
max_length = 32
tokens = enc.encode("Hello, I am a language model,")
tokens = torch.tensor(tokens, dtype=torch.long)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
x_generate = tokens.to(device)
sample_rng = torch.Generator(device=device)
sample_rng.manual_seed(42 + ddp_rank)
while x_generate.size(1) < max_length:
with torch.no_grad():
logits, loss = model(x_generate)
# get logits from last position
logits = logits[:, -1, :] # this is (Batch , vocab_size) dim now
# get the probabilities
probs = F.softmax(logits, dim=-1)
# perform topk sampling with size 50, HF default is 5, 50
topk_probs, topk_indices = torch.topk(probs, k=50, dim=-1)
# select a random token from topk, this is (Batch_size, 1) dim
ix = torch.multinomial(topk_probs, 1, generator=sample_rng)
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
x_generate = torch.cat([x_generate, xcol], dim=1)
# print generated sequence
for i in range(num_return_sequences):
tokens = x_generate[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(f"rank: {ddp_rank} sample {i} : {decoded}")
if step % 250 == 0 or last_step and not to_compile:
num_correct_norm = 0
num_total = 0
for i, example in enumerate(iterate_examples("val")):
if i % ddp_world_size != ddp_rank:
continue
# render examples into tokens and labels
_, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
# get logits
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(tokens)
pred_norm = get_most_likely_row(tokens, mask, logits)
num_total += 1
num_correct_norm += int(pred_norm == label)
if ddp:
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
num_total = num_total.item()
num_correct_norm = num_correct_norm.item()
acc_norm = num_correct_norm / num_total
if master_process:
print(f"HellaSwag accuracy == {num_correct_norm}/{num_total} = {acc_norm:.4f}")
with open(log_file, 'a') as f:
f.write(f"\n{step} hellaswag accuracy: {acc_norm:.4f}")
# normal training code
model.train()
optimizer.zero_grad()
model.require_backward_grad_sync = False # being explicit to disable grad sync as we want to accumulate first
loss_accumulator = 0.0
for micro_step in range(gradient_accumulation_steps):
x, y = train_loader.next_batch()
x, y = x.to(device=device), y.to(device)
if ddp:
model.require_backward_grad_sync = (
micro_step == gradient_accumulation_steps - 1) # enable only on last step
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / gradient_accumulation_steps
loss_accumulator += loss.detach()
loss.backward() # keep updating grad here (adding up)
# average loss_accumulator now
if ddp:
# fetches loss_accumulator from all ranks, averages those and updates all
dist.all_reduce(loss_accumulator, op=dist.ReduceOp.AVG)
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
t1 = time.time()
dt = (t1 - t0)
tokens_per_sec = (train_loader.B * train_loader.T * gradient_accumulation_steps * ddp_world_size) / (dt)
if master_process:
print(
f'step : {step + 1} | loss: {loss_accumulator.item()} | dt: {dt * 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.2f} | LR:{lr:.6f} | norm:{norm:.3f}')
with open(log_file, 'a') as f:
f.write(f"\n{step} train {loss_accumulator.item():.6f}")
if ddp:
destroy_process_group()