-
Notifications
You must be signed in to change notification settings - Fork 373
/
extract_features_fp.py
120 lines (92 loc) · 3.96 KB
/
extract_features_fp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import time
import os
import argparse
import pdb
from functools import partial
import torch
import torch.nn as nn
import timm
from torch.utils.data import DataLoader
from PIL import Image
import h5py
import openslide
from tqdm import tqdm
import numpy as np
from utils.file_utils import save_hdf5
from dataset_modules.dataset_h5 import Dataset_All_Bags, Whole_Slide_Bag_FP
from models import get_encoder
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def compute_w_loader(output_path, loader, model, verbose = 0):
"""
args:
output_path: directory to save computed features (.h5 file)
model: pytorch model
verbose: level of feedback
"""
if verbose > 0:
print(f'processing a total of {len(loader)} batches'.format(len(loader)))
mode = 'w'
for count, data in enumerate(tqdm(loader)):
with torch.inference_mode():
batch = data['img']
coords = data['coord'].numpy().astype(np.int32)
batch = batch.to(device, non_blocking=True)
features = model(batch)
features = features.cpu().numpy().astype(np.float32)
asset_dict = {'features': features, 'coords': coords}
save_hdf5(output_path, asset_dict, attr_dict= None, mode=mode)
mode = 'a'
return output_path
parser = argparse.ArgumentParser(description='Feature Extraction')
parser.add_argument('--data_h5_dir', type=str, default=None)
parser.add_argument('--data_slide_dir', type=str, default=None)
parser.add_argument('--slide_ext', type=str, default= '.svs')
parser.add_argument('--csv_path', type=str, default=None)
parser.add_argument('--feat_dir', type=str, default=None)
parser.add_argument('--model_name', type=str, default='resnet50_trunc', choices=['resnet50_trunc', 'uni_v1', 'conch_v1'])
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--no_auto_skip', default=False, action='store_true')
parser.add_argument('--target_patch_size', type=int, default=224)
args = parser.parse_args()
if __name__ == '__main__':
print('initializing dataset')
csv_path = args.csv_path
if csv_path is None:
raise NotImplementedError
bags_dataset = Dataset_All_Bags(csv_path)
os.makedirs(args.feat_dir, exist_ok=True)
os.makedirs(os.path.join(args.feat_dir, 'pt_files'), exist_ok=True)
os.makedirs(os.path.join(args.feat_dir, 'h5_files'), exist_ok=True)
dest_files = os.listdir(os.path.join(args.feat_dir, 'pt_files'))
model, img_transforms = get_encoder(args.model_name, target_img_size=args.target_patch_size)
_ = model.eval()
model = model.to(device)
total = len(bags_dataset)
loader_kwargs = {'num_workers': 8, 'pin_memory': True} if device.type == "cuda" else {}
for bag_candidate_idx in tqdm(range(total)):
slide_id = bags_dataset[bag_candidate_idx].split(args.slide_ext)[0]
bag_name = slide_id+'.h5'
h5_file_path = os.path.join(args.data_h5_dir, 'patches', bag_name)
slide_file_path = os.path.join(args.data_slide_dir, slide_id+args.slide_ext)
print('\nprogress: {}/{}'.format(bag_candidate_idx, total))
print(slide_id)
if not args.no_auto_skip and slide_id+'.pt' in dest_files:
print('skipped {}'.format(slide_id))
continue
output_path = os.path.join(args.feat_dir, 'h5_files', bag_name)
time_start = time.time()
wsi = openslide.open_slide(slide_file_path)
dataset = Whole_Slide_Bag_FP(file_path=h5_file_path,
wsi=wsi,
img_transforms=img_transforms)
loader = DataLoader(dataset=dataset, batch_size=args.batch_size, **loader_kwargs)
output_file_path = compute_w_loader(output_path, loader = loader, model = model, verbose = 1)
time_elapsed = time.time() - time_start
print('\ncomputing features for {} took {} s'.format(output_file_path, time_elapsed))
with h5py.File(output_file_path, "r") as file:
features = file['features'][:]
print('features size: ', features.shape)
print('coordinates size: ', file['coords'].shape)
features = torch.from_numpy(features)
bag_base, _ = os.path.splitext(bag_name)
torch.save(features, os.path.join(args.feat_dir, 'pt_files', bag_base+'.pt'))