-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathpredict.py
166 lines (143 loc) · 4.88 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from networks import FaceBox
from encoderl import DataEncoder
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import cv2
from tqdm import tqdm
print('opencv version', cv2.__version__)
use_gpu = True
def detect(im):
im = cv2.resize(im, (1024,1024))
im_tensor = torch.from_numpy(im.transpose((2,0,1)))
im_tensor = im_tensor.float().div(255)
# print(im_tensor.shape)
loc, conf = net(Variable(torch.unsqueeze(im_tensor, 0), volatile=True))
boxes, labels, probs = data_encoder.decode(loc.data.squeeze(0),
F.softmax(conf.squeeze(0)).data)
return boxes, probs
def detect_gpu(im):
im = cv2.resize(im, (1024,1024))
im_tensor = torch.from_numpy(im.transpose((2,0,1)))
im_tensor = im_tensor.float().div(255)
# print(im_tensor.shape)
loc, conf = net(Variable(torch.unsqueeze(im_tensor, 0), volatile=True).cuda())
loc, conf = loc.cpu(), conf.cpu()
boxes, labels, probs = data_encoder.decode(loc.data.squeeze(0),
F.softmax(conf.squeeze(0)).data)
return boxes, probs
def testVideo(file):
cap = cv2.VideoCapture(file)
if not cap.isOpened():
print("video cann't open")
_, im = cap.read()
h,w,_ = im.shape
while True:
_,im = cap.read()
boxes,_ = detect(im)
print(boxes)
for box in boxes:
x1 = int(box[0]*w)
x2 = int(box[2]*w)
y1 = int(box[1]*h)
y2 = int(box[3]*h)
print(x1, y1, x2, y2, w, h)
cv2.rectangle(im,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imshow("video", im)
cv2.waitKey(2)
def testIm(file):
im = cv2.imread(file)
if im is None:
print("can not open image:", file)
return
h,w,_ = im.shape
boxes, probs = detect(im)
print(boxes)
for i, (box) in enumerate(boxes):
print('i', i, 'box', box)
x1 = int(box[0]*w)
x2 = int(box[2]*w)
y1 = int(box[1]*h)
y2 = int(box[3]*h)
print(x1, y1, x2, y2, w, h)
cv2.rectangle(im,(x1,y1+4),(x2,y2),(0,0,255),2)
cv2.putText(im, str(round(probs[i],2)), (x1,y1), font, 0.4, (0,0,255))
cv2.imwrite('photo.jpg', im)
# cv2.waitKey(0)
return im
def testImList(path, file_name):
with open(path+file_name) as f:
file_list = f.readlines()
for item in file_list:
testIm(path+item.strip()+'.jpg')
def saveFddbData(path, file_name):
'''
Args:
file_name: fddb image list
'''
with open(path+file_name) as f:
file_list = f.readlines()
f_write = open('predict.txt', 'w')
image_num = 0
for item in tqdm(file_list):
item = item.strip()
if not ('/' in item):
continue
image_num += 1
im = cv2.imread(path+item+'.jpg')
if im is None:
print('can not open image', item)
return
h,w,_ = im.shape
if use_gpu:
boxes, probs = detect_gpu(im)
else:
boxes, probs = detect(im)
f_write.write(item+'\n')
f_write.write(str(boxes.size(0))+'\n')
# print('image_num', image_num, 'box_num', boxes.size(0))
for i, (box) in enumerate(boxes):
x1 = box[0]*w
x2 = box[2]*w
y1 = box[1]*h
y2 = box[3]*h
f_write.write(str(x1)+'\t'+str(y1)+'\t'+str(x2-x1)+'\t'+str(y2-y1)+'\t'+str(probs[i])+'\t'+'1\n')
f_write.close()
def getFddbList(path, file_name):
with open(path+file_name) as f:
file_list = f.readlines()
f_write = open(path+'fddblist.txt', 'w')
for item in file_list:
if '/' in item:
f_write.write(item)
f_write.close()
print('get fddb list done')
if __name__ == '__main__':
net = FaceBox()
net.load_state_dict(torch.load('weight/faceboxes.pt', map_location=lambda storage, loc:storage))
if use_gpu:
net.cuda()
net.eval()
data_encoder = DataEncoder()
font = cv2.FONT_HERSHEY_SCRIPT_SIMPLEX
# given video path, predict and show
path = "/home/lxg/codedata/faceVideo/1208.mp4"
# testVideo(path)
# given image path, predict and show
root_path = "/home/lxg/codedata/widerFace/WIDER_train/images/0--Parade/"
picture = '0_Parade_marchingband_1_495.jpg'
# testIm(root_path + picture)
# given image path, predict and show
fddb_path = "/home/lxg/codedata/fddb/2002/07/19/big/"
picture = 'img_463.jpg'
im = testIm(fddb_path + picture)
# cv2.imwrite('picture/'+picture, im)
# given image file list, predict and show
path = '/home/lxg/codedata/fddb/'
file_name = 'FDDB-folds/FDDB-fold-01.txt'
# testImList(path, file_name)
# get fddb preddict and write them to predict.txt
path = '/home/lxg/codedata/fddb/'
file_name = 'fddb.txt'
# saveFddbData(path, file_name)
# getFddbList(path, file_name)