-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinous_alogrithm_reconstruct_.py
842 lines (730 loc) · 32.5 KB
/
continous_alogrithm_reconstruct_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
import numpy as np
import math
import matplotlib.pyplot as plt
import random
import cv2
import threading
from matplotlib.animation import FuncAnimation
import time
from motion_roadmap import MotionRoadmap
import motion_planning_toolbox as mpt
import datetime
import os
class ant:
def __init__(self,
start_x=150,
start_y=150,
start_angle=0,
target_x=250,
target_y=250,
step_length=3,
step_length_min=3,
sense_radius=9,
random_angle_range=5,
end_threshold=5,
map_size=[300,300],
obstacle_map=None,
):
self.current_pos_x=start_x
self.current_pos_y=start_y
self.facing_angle=start_angle
self.arrive_ending=False
self.path=np.array([[start_x,start_y]])
self.path_length=0
self.start_x=start_x
self.start_y=start_y
self.start_angle=start_angle
self.target=[target_x,target_y]
self.map_size_x=map_size[0]
self.map_size_y=map_size[1]
if obstacle_map is None:
self.obstacle_map=np.zeros(map_size)
else:
self.obstacle_map=obstacle_map
self.step_length=step_length
self.step_length_min=step_length_min
self.sense_radius=sense_radius
self.random_angle_range=random_angle_range
self.end_threshold=end_threshold
def judgeDirection(self,
InfoDensityMap,
angleMap):
#从前方区域中找信息素浓度较高的地方前进
x=self.current_pos_x
y=self.current_pos_y
current_angle=self.facing_angle
map_size_x=InfoDensityMap.shape[0]
map_size_y=InfoDensityMap.shape[1]
sense_radius=self.sense_radius#信息素搜集半径
#备选方向
left_angle=60
right_angle=-60
random_angle_range=self.random_angle_range#角度随机范围:+r~-r
left_info_density=0
mid_info_density=0
right_info_density=0
x_down=max(math.ceil(x-sense_radius),0)
x_up=min(math.floor(x+sense_radius),map_size_x)
y_down=max(math.ceil(y-sense_radius),0)
y_up=min(math.floor(y+sense_radius),map_size_y)
search_range_map=InfoDensityMap[x_down:x_up,y_down:y_up]
if (np.max(search_range_map)==0):
#如果周围没有信息素,就按原方向走
max_info_density_angle=current_angle
else:
max_info_density_angle=get_max_infoDensity_angle(InfoDensityMap,
round(x),
round(y),
radius=sense_radius)
# for ix in range(x_down,x_up):
# for iy in range(y_down,y_up):
# #检测圆半径
# r=math.sqrt((ix-x)**2+(iy-y)**2)
# if r>sense_radius:continue
# #计算方位
# info_angle=math.atan2(iy-y,ix-x)*180/math.pi
# if info_angle<0:info_angle+=360
# delta_angle=info_angle-current_angle
# if(delta_angle>left_angle/2*3)or(delta_angle<right_angle/2*3):continue
# if(delta_angle>left_angle/2):
# left_info_density+=InfoDensityMap[ix][iy]
# elif(delta_angle>right_angle/2):
# mid_info_density+=InfoDensityMap[ix][iy]
# else:
# right_info_density+=InfoDensityMap[ix][iy]
# tolerance=1e-5
# if(abs(mid_info_density-left_info_density)<tolerance)and\
# (abs(mid_info_density-right_info_density)<tolerance):
# #如果差不多,则默认不转动
# angle_select=1
# else:
# #否则选择最大信息素方向
# density_array=[left_info_density,mid_info_density,right_info_density]
# #硬最大值
# # angle_select=np.argmax(judge_angle_array)
# #softmax + 随机概率
# density_array-=np.max(density_array)#防溢出
# prob_array=np.exp(density_array)/np.sum(np.exp(density_array))
# angle_select=chooseByProb([0,1,2],prob_array)
# if(angle_select==0):
# max_info_density_angle=current_angle+left_angle
# elif(angle_select==1):
# max_info_density_angle=current_angle
# elif(angle_select==2):
# max_info_density_angle=current_angle+right_angle
# #排除刚好沿着路径方向走的情况
reference_radius=3
x_down=max(math.ceil(x-reference_radius),0)
x_up=min(math.floor(x+reference_radius),map_size_x)
y_down=max(math.ceil(y-reference_radius),0)
y_up=min(math.floor(y+reference_radius),map_size_y)
reference_angle_map=angleMap[x_down:x_up+1,y_down:y_up+1]
mask=reference_angle_map>0
data=reference_angle_map[mask]
if not len(data)==0:
#求均值时排除差特别多的点
# 计算数据集平均值和标准差
data_mean = np.mean(data)
data_std = np.std(data)
# 计算每个数据点的 Z-Score
z_scores = (data - data_mean) / data_std
# 找到大于 3 或者小于 -3 的数据点
outliers = np.where(np.abs(z_scores) > 2)
# 移除离群点,重新计算平均值
data_cleaned = np.delete(data, outliers)
mean_cleaned = np.mean(data_cleaned)
reference_angle=mean_cleaned
# #debug:显示当前search_map
# # image=cv2.resize(cv2.transpose(np.flip(reference_angle_map,1)),(280,280),cv2.INTER_BITS)
# # for i in range(image.shape[1]):
# # for j in range(image.shape[0]):
# # if (i%40==0)or(j%40==0):
# # image[j, i] = np.max(image)
# # cv2.imshow('123',image)
#只考虑站的位置上的参考方向
# reference_angle=data[0]
tolerence_angle=30
delta=abs(max_info_density_angle-reference_angle)-180
if abs(delta)<tolerence_angle:
max_info_density_angle=max_info_density_angle-180
if max_info_density_angle<0:max_info_density_angle+=360
#随机角度
random_angle=random.random()*random_angle_range*2-random_angle_range
#终点的方向
endpoint_angle=math.atan2(self.target[1]-y,self.target[0]-x)*180/math.pi
#在原来方向、最大信息素方向、终点方向中选一个
prob=random.random()
#终点距离和概率有关,大于临界值都设1%,小于临界值线性增大
target_dist=math.sqrt((self.target[1]-y)**2+(self.target[0]-x)**2)
prob_threshold=30
if target_dist>prob_threshold:
target_prob=0.01
else:
target_prob=1-target_dist/prob_threshold*0.99
if prob<target_prob:
next_facing_angle=endpoint_angle
else:
#在当前角度和最大信息素角度中选一个
# prob2=random.random()
# if prob<0.5:
# next_facing_angle=max_info_density_angle
# else:
# next_facing_angle=current_angle
#根据最大信息素角度产生偏转
delta=max_info_density_angle-current_angle
if delta>180:delta-=360
if delta<-180:delta+=360
next_facing_angle=current_angle+delta/15
next_facing_angle+=random_angle
#整定到0~360度之间
next_facing_angle=math.fmod(next_facing_angle,360)
self.facing_angle=next_facing_angle
def walk(self):
min_step=self.step_length_min
max_step=self.step_length
step_length=random.random()*(max_step-min_step)+min_step
#前进一步
x=self.current_pos_x
y=self.current_pos_y
angle=self.facing_angle
next_pos_x=x+step_length*math.cos(angle/180*math.pi)
next_pos_y=y+step_length*math.sin(angle/180*math.pi)
self.facing_angle=angle
#地图边界处理,碰撞检测
if(self.obstacleDetection(x=next_pos_x,y=next_pos_y)):
#如果碰撞,还要更改一次方向
next_pos_x=x+step_length*math.cos(self.facing_angle/180*math.pi)
next_pos_y=y+step_length*math.sin(self.facing_angle/180*math.pi)
if(self.obstacleDetection(x=next_pos_x,y=next_pos_y)):
#反弹一次还是有碰撞,直接重置
self.reset()
return
self.current_pos_x=next_pos_x
self.current_pos_y=next_pos_y
self.path=np.concatenate((self.path,[[next_pos_x,next_pos_y]]))
self.path_length+=step_length
def isEnd(self):
x=self.current_pos_x
y=self.current_pos_y
tx=self.target[0]
ty=self.target[1]
dist=math.sqrt((x-tx)**2+(y-ty)**2)
if (dist<self.end_threshold):
#把最后一个点放到path中
self.path=np.concatenate((self.path,[[tx,ty]]))
return True
else:return False
def obstacleDetection(self,
x,
y):
#地图边界处理
map_size_x=self.map_size_x
map_size_y=self.map_size_y
obstacle_flag=False
if(round(x)<0)or(round(x)>=map_size_x):
self.facing_angle=180-self.facing_angle
obstacle_flag=True
if(round(y)<0)or(round(y)>=map_size_y):
self.facing_angle=-self.facing_angle
obstacle_flag=True
if obstacle_flag:
self.facing_angle=math.fmod(self.facing_angle,360)
return True
#障碍检测
#策略2:找障碍法向,沿墙壁法向翻转
if self.obstacle_map[round(x)][round(y)]>0:
#先找行进方向和墙壁边线的交点
current_x=self.current_pos_x
current_y=self.current_pos_y
next_x=x
next_y=y
angle=self.facing_angle
surface_x=x
surface_y=y
for step_length in np.arange(0,self.step_length,0.5) :
surface_x=round(current_x+step_length*math.cos(angle/180*math.pi))
surface_y=round(current_y+step_length*math.sin(angle/180*math.pi))
if self.obstacle_map[surface_x][surface_y]>0:
break
calculate_radius=3
x_down=max(math.ceil(surface_x-calculate_radius),0)
x_up=min(math.floor(surface_x+calculate_radius),map_size_x)
y_down=max(math.ceil(surface_y-calculate_radius),0)
y_up=min(math.floor(surface_y+calculate_radius),map_size_y)
#计算得到交点后,截取交点附近的墙壁,作边缘检测算子
calculate_map=self.obstacle_map[x_down:x_up,y_down:y_up]
#注意用cv2的函数前x,y转置
calculate_map=cv2.transpose(calculate_map)
# cv2.imshow("456",cv2.resize(calculate_map*255,(300,300)))
canny=cv2.Canny(calculate_map,0.5,0.5)
# cv2.imshow("123",cv2.resize(canny,(300,300)))
#二值化得到边线的点
thresh_img = cv2.threshold(canny, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# cv2.imshow("789",cv2.resize(thresh_img,(300,300)))
points = np.column_stack(np.where(thresh_img.transpose() > 0))
if(points.shape[0]==0):
#没检测到边线的点
return False
vx, vy, x, y = cv2.fitLine(points, cv2.DIST_L2, 0, 0.1, 0.1)
edge_angle=math.atan2(vy,vx)*180/math.pi
# normal_angle=edge_angle+90
#沿法线方向翻转
#确认法线方向没有反
# if(abs(normal_angle-angle)<90)
self.facing_angle=2*edge_angle-self.facing_angle
self.facing_angle=math.fmod(self.facing_angle,360)
return True
#策略3:往随机方向转,直到不碰撞
if (self.obstacle_map[round(x)][round(y)]>0):
while(True):
self.facing_angle=random.random()*360
x=self.current_pos_x+self.step_length*math.cos(self.facing_angle/180*math.pi)
y=self.current_pos_y+self.step_length*math.sin(self.facing_angle/180*math.pi)
if(round(x)<0)or(round(x)>=map_size_x):
continue
if(round(y)<0)or(round(y)>=map_size_y):
continue
if (self.obstacle_map[round(x)][round(y)]==0):
break
return True
return False
def reset(self):
self.current_pos_x=self.start_x
self.current_pos_y=self.start_y
self.facing_angle=self.start_angle
self.arrive_ending=False
self.path=np.array([[self.start_x,self.start_y]])
self.path_length=0
class continous_ant_alogrithm:
def __init__(self,
terrain_image,
target_x,
target_y,
start_x,
start_y,
ant_limit=100,
history_max_length=10,
update_cycle=50,
RRT_initialize=False,
):
#图片坐标和逻辑坐标对应关系
#首先opencv是先y坐标后x坐标,所以转置一下
self.terrainMap=cv2.transpose(terrain_image)
self.map_size_x=self.terrainMap.shape[0]
self.map_size_y=self.terrainMap.shape[1]
self.map_size=[self.map_size_x,self.map_size_y]
#另外图片y变小对应逻辑坐标y变大,y坐标相反
#用flip翻转第二个坐标(y)
self.terrainMap=np.flip(self.terrainMap,1)
ObstacleMap=cv2.cvtColor(self.terrainMap, cv2.COLOR_RGB2GRAY)
# cv2.imshow('123',ObstacleMap)
ObstacleMap[ObstacleMap == 0] = 1 #黑色像素点表示障碍
ObstacleMap[ObstacleMap == 255] = 0 #白色像素点表示可通过
self.ObstacleMap=ObstacleMap
self.target_x=target_x
self.target_y=target_y
self.start_x=start_x
self.start_y=start_y
self.ant_limit=ant_limit
self.history_max_length=history_max_length
self.history_path=[]
self.history_best_ant_series=[]
self.history_update=True
initial_infoDensity=0
self.InfoDensityMap=np.ones(self.map_size)*initial_infoDensity
self.angleMap=np.ones(self.map_size)*(-1)#负数表示没有值
self.angleNumberMap=np.zeros(self.map_size)
fig,axes = plt.subplots()
fig.set_size_inches([7,7]) # 设置图像大小
axes.set_xlim(0, self.map_size_x)
axes.set_ylim(0, self.map_size_y)
self.fig=fig
self.axes=axes
#逻辑绘图,注意只转置就行,因为plt坐标轴是对的,但是索引还是[y][x]
self.im=axes.imshow(np.transpose(ObstacleMap),cmap="binary",origin="upper")
plt.pause(0.01)
#cv2绘图,把逻辑数组恢复到图片数组
# cv2.imshow('123',cv2.transpose(np.flip(ObstacleMap,1)*255))
self.ant_series=[self.new_ant()]
#直接生成所有的蚂蚁
# for i in range(self.ant_limit-1):
# self.ant_series.append(self.new_ant())
if RRT_initialize:
self.InitializePathGraph()
self.iteration_count=0
self.date=datetime.datetime.now()
self.update_cycle=update_cycle
def InitializePathGraph(self):
#RRT
img = self.terrainMap
#逻辑图转回原图
img=np.flip(img,1)
img=cv2.transpose(img)
#RRT算法处理的时候,根据cv2坐标
#和逻辑坐标不同,所以把0轴[y]反一下
img=cv2.flip(img,0)
mr = MotionRoadmap(img)
mr.point_strat = np.mat([self.start_x,self.start_y])
mr.point_goal = np.mat([self.target_x,self.target_y])
step=6
threshold=6
mr.rrt_planning(s=step, t=threshold, l=300000,p=True)
# mpt.tree_plot(mr.map, mr.rrt_tree)
path=mr.get_path()
#生成蚂蚁放入历史记录中
m_ant=self.new_ant()
m_ant.step_length=step
m_ant.path=path
m_ant.path_length=(len(path)-1)*step
self.history_best_ant_series.append(m_ant)
self.history_path.append(m_ant.path_length)
self.history_update=True
self.updateInfoDensity()
def iterate(self):
self.iteration_count+=1
if len(self.ant_series)<self.ant_limit:
#数量没达到上限之前,每次迭代增加一只蚂蚁
self.ant_series.append(self.new_ant())
#对所有蚂蚁推进时间
for i in range(len(self.ant_series)):
m_ant=self.ant_series[i]
m_ant.judgeDirection(self.InfoDensityMap,self.angleMap)
m_ant.walk()
if m_ant.isEnd():
#走到终点了,就重新生成一个替换
self.ant_series[i]=self.new_ant()
#把结果插入历史队列中(二分法)
element=m_ant.path_length
low, high = 0, len(self.history_path)
while low < high:
mid = (low + high) // 2
if self.history_path[mid] < element:
low = mid + 1
else:
high = mid
#维护长度
if low==self.history_max_length:
#插入的是最后一个值,丢弃不用
pass
else:
self.history_path.insert(low,element)
self.history_best_ant_series.insert(low,m_ant)
if len(self.history_path)>self.history_max_length:
#插入在中间导致了超长,则删除最后一个元素
del self.history_path[self.history_max_length]
del self.history_best_ant_series[self.history_max_length]
self.history_update=True
print("current:{0:.2f},best:{1:.2f},bad:{2:.2f},iter:{3}".format(
m_ant.path_length,
self.history_best_ant_series[0].path_length,
self.history_best_ant_series[-1].path_length,
self.iteration_count))
# print("current:{0:.2f},best:{1:.2f},bad:{2:.2f},iter:{3}".format(
# m_ant.path_length,
# self.history_best_ant_series[0].path_length,
# self.history_best_ant_series[-1].path_length,
# self.iteration_count))
#路径太长,没有继续计算价值,则清除
min_length=np.inf
max_length=np.inf
if len(self.history_best_ant_series)>0:
min_length=self.history_best_ant_series[0].path_length
max_length=self.history_best_ant_series[-1].path_length
case1=m_ant.path_length>min_length*2
case2=(not len(self.history_best_ant_series)<self.history_max_length)\
and (m_ant.path_length>max_length)
if case1 or case2:
self.ant_series[i]=self.new_ant()
#迭代完所有蚂蚁以后,更新信息素
self.updateInfoDensity()
def updateInfoDensity(self):
# #行走的过程中产生信息素
# for m_ant in self.ant_series:
# path_length=m_ant.path_length
# x=m_ant.current_pos_x
# y=m_ant.current_pos_y
# # self.InfoDensityMap[round(x),round(y)]+=1/path_length
# self.InfoDensityMap[round(x),round(y)]+=1
# return
if not self.history_update:
return
self.InfoDensityMap=np.zeros(self.map_size)
self.angleMap=np.ones(self.map_size)*(-1)#负数表示没有值
self.angleNumberMap=np.zeros(self.map_size)
update_len=int(self.history_max_length*0.666)
update_len=min(len(self.history_best_ant_series),update_len)
for history_rank in range(update_len):
#对历史n个最短路径更新信息素
m_ant=self.history_best_ant_series[history_rank]
#信息素强度和路径长度在历史路径中的排名有关
min_x,max_x=0,len(self.history_path)
min_y,max_y=0,1
rank=(history_rank-min_x)/(max_x-min_x)
if (max_x==min_x):
func_y=max_y
else:
func_x=1-rank
func_y=pow(func_x,10)*(max_y-min_y)+min_y
#信息素强度和路径长度倒数有关
# func_x=1/m_ant.path_length
# func_y=1*func_x
path_max_intensity=func_y*100
#使一条路径上的信息素强度不同(可以帮助识别路径的来去方向)
#越接近终点强度越大
for path_index in range(len(m_ant.path)-1):
#等差式增大
min_scaler=0.5
max_scaler=1
scaler=path_index/len(m_ant.path)*(max_scaler-min_scaler)+min_scaler
#不增大
# scaler=1
point1=m_ant.path[path_index]
point2=m_ant.path[path_index+1]
#cv2方式更新:适用于信息素半径大于1的情况
# new_map=np.zeros(self.map_size)
# cv2.line(img=new_map,
# pt1=np.flip(point1).astype(int),
# pt2=np.flip(point2).astype(int),
# color=path_max_intensity*scaler,
# thickness=1)
# self.InfoDensityMap=self.InfoDensityMap+new_map
#信息素半径为1
path_angle=math.atan2(point2[1]-point1[1],point2[0]-point1[0])*180/math.pi
if path_angle<0:path_angle+=360
x=np.linspace(point1[0],point2[0],m_ant.step_length*3)
y=np.linspace(point1[1],point2[1],m_ant.step_length*3)
#填补步长太大导致的空隙
points=[(round(x[i]),round(y[i])) for i in range(len(x))]
#去除重复
seen = set()
result = []
for point in points:
if point not in seen:
seen.add(point)
result.append(list(point))
points=np.array(result)
for i in range(len(points)-1):#线段两端端点只更新一个,否则重叠后有问题
point=tuple(points[i])
self.InfoDensityMap[point]+=path_max_intensity*scaler
if self.angleMap[point]==-1:
self.angleMap[point]=0
self.angleMap[point]+=path_angle
self.angleNumberMap[point]+=1
#去除信息素浓度特别小的点
max_info_density=np.max(self.InfoDensityMap)
mask=self.InfoDensityMap<(max_info_density*0.01)
self.InfoDensityMap[mask]=0
#方向地图求平均
mask=self.angleNumberMap>0
angleMap_updated=np.ones(self.map_size)*(-1)
angleMap_updated[mask]=self.angleMap[mask]/self.angleNumberMap[mask]
self.angleMap=angleMap_updated
self.history_update=False
def outputSolution(self):
target_point_radius=1
ant_color=(255,0,0,255)
target_color=(241,188,202,255)
info_color=(0,0,255)
update_cycle=self.update_cycle
#每隔一定周期画图,其他时候返回上一刻图像
if not(self.iteration_count%update_cycle==0):
print("iter:{0}".format(self.iteration_count))
return self.im
#复制原始地形
imageArray=np.copy(self.terrainMap)
imageArray=cv2.cvtColor(imageArray, cv2.COLOR_RGB2RGBA)
#如果没有信息素,只绘制蚂蚁和终点
max_info_density=np.max(self.InfoDensityMap)
if max_info_density==0:
for m_ant in self.ant_series:
x=m_ant.current_pos_x
y=m_ant.current_pos_y
imageArray[round(x),round(y)]=ant_color
imageArray=cv2.transpose(imageArray)
cv2.circle(imageArray,
(self.target_x,self.target_y),
radius=target_point_radius,
color=target_color,
thickness=-1,
lineType=cv2.LINE_AA)
imageArray=cv2.transpose(imageArray)
imageArray=cv2.transpose(imageArray)
self.im.set_array(imageArray)
return self.im
#绘制信息素
info_update_points=[]
for i in range(self.map_size[0]):
for j in range(self.map_size[1]):
# if self.InfoDensityMap[i][j]/max_info_density<0.01:continue
if self.InfoDensityMap[i][j]/max_info_density==0:continue
info_update_points.append((i,j))
#归一化
color_info_density=[self.InfoDensityMap[point] for point in info_update_points]
max_color=np.max(color_info_density)
min_color=np.min(color_info_density)
color_info_density=(color_info_density-min_color)/(max_color-min_color)
# color_info_density=color_info_density*0.5+0.5
color_map = np.zeros((len(info_update_points), 4)) # 创建颜色数组
color_map[:,0:2+1]=info_color # 将全部的蓝色通道设为255
color_map[:,3]=color_info_density*255 # 将不透明度设为信息素浓度
for i in range(len(info_update_points)):
point=info_update_points[i]
imageArray[point[0],point[1]]=tuple(color_map[i])
#绘制蚂蚁
for m_ant in self.ant_series:
x=m_ant.current_pos_x
y=m_ant.current_pos_y
imageArray[round(x),round(y)]=ant_color
#绘制终点
imageArray=cv2.transpose(imageArray)
cv2.circle(imageArray,
(self.target_x,self.target_y),
radius=target_point_radius,
color=target_color,
thickness=-1,
lineType=cv2.LINE_AA)
imageArray=cv2.transpose(imageArray)
imageArray=cv2.transpose(imageArray)
# 每隔一定周期保存一次图片,但是注意这里保存的是上一周期的
# 因为这次的图像还没显示
# 前面几个周期的时候也有可能因为没有信息素跳过
if (self.iteration_count%update_cycle==0):
dirname="date@{0:%Y-%m-%d-%H-%M-%S}".format(self.date)
file_name="iter{0}.png".format(self.iteration_count)
dirfullpath=os.path.dirname(__file__)+"\\solutionMap\\"+dirname
if not os.path.exists(dirfullpath):
os.mkdir(dirfullpath)
write_path=os.path.dirname(__file__)+"\\solutionMap\\"+dirname+"\\"+file_name
plt.savefig(write_path,dpi=300)
#cv2保存有bug,不显示alpha通道
#image=cv2.cvtColor(cv2.flip(imageArray,0),cv2.COLOR_RGBA2BGRA)
#cv2.imencode('.png', image)[1].tofile(write_path)
self.im.set_array(imageArray)
return self.im
def new_ant(self,
angle=None):
if angle is None:
if random.random()<0.8:
angle=get_max_infoDensity_angle(self.InfoDensityMap,
self.start_x,
self.start_y,
radius=10)
else:
angle=random.random()*360
m_ant=ant(obstacle_map=self.ObstacleMap,
start_angle=angle,
start_x=self.start_x,
start_y=self.start_y,
target_x=self.target_x,
target_y=self.target_y,
map_size=self.map_size)
return m_ant
m_ant=ant(obstacle_map=self.ObstacleMap,
start_angle=angle,
start_x=self.start_x,
start_y=self.start_y,
target_x=self.target_x,
target_y=self.target_y,
map_size=self.map_size)
return m_ant
def get_max_infoDensity_angle(map,x,y,radius=3):
#找点圆形范围内信息素最大的方向
map_size_x=map.shape[0]
map_size_y=map.shape[1]
x_down=max(math.ceil(x-radius),0)
x_up=min(math.floor(x+radius),map_size_x)
y_down=max(math.ceil(y-radius),0)
y_up=min(math.floor(y+radius),map_size_y)
search_map=map[x_down:x_up+1,
y_down:y_up+1]
#创建一个0~360度的数组
#对圆形范围内的所有像素点进行投票
gap=15#区间长度
bar=np.zeros(int(360/gap))
#0gap~1gap,1gap~2gap,n-1~ngap
#共360/gap长度
#第i对应(i~i+1)*gap范围
map_size_x=search_map.shape[0]
map_size_y=search_map.shape[1]
center_x=(map_size_x-1)/2
center_y=(map_size_y-1)/2
if np.max(search_map)==0:
return random.random()*360
#debug:显示当前search_map
# grid_length=40
# size=(2*radius+1)*grid_length
# debug_search_map=search_map/np.max(search_map)
# debug_search_map=cv2.transpose(np.flip(debug_search_map,1))
# image=np.zeros((size,size))
# for i in range(image.shape[1]):
# for j in range(image.shape[0]):
# if (i%grid_length==0)or(j%grid_length==0):
# image[j,i]=1
# else:
# ix=i//grid_length
# iy=j//grid_length
# image[j,i]=debug_search_map[iy][ix]
# cv2.imshow('123',image)
for i in range(map_size_x):
for j in range(map_size_y):
if search_map[i,j]==0:continue
dx=i-center_x
dy=j-center_y
if(math.sqrt(dx**2+dy**2)>radius):continue
angle=math.atan2(dy,dx)*180/math.pi
if angle<0:angle+=360#-180~0转换到180~360
index=int(angle/gap)
bar[index]+=search_map[i,j]
#得出最大区间
#硬最大值
#max_index=np.argmax(bar)
#softmax
bar-=np.max(bar)#防溢出
prob_array=np.exp(bar)/np.sum(np.exp(bar))
max_index=chooseByProb(range(len(bar)),prob_array)
max_angle=(max_index+0.5)*gap
#print("spawn-angle:{0:.2f}".format(max_angle))
return max_angle
def chooseByProb(array,
array_prob):
#输入一个数组,和每项对应的概率
#返回选择的结果
sumProb=np.sum(array_prob)
#生成随机数
r=random.random()*sumProb
probCount=0
for pathIndex in range(len(array)):
probCount=probCount+array_prob[pathIndex]
if r<probCount:#随机数落在该概率区间内,说明随机到了这条路径
return array[pathIndex]
alogrithm=None
def figure_update(iteration_count):
global alogrithm
alogrithm.iterate()
plot=True
if plot:
alogrithm.outputSolution()
return alogrithm.im
if __name__=='__main__':
terrain_image=cv2.imread('map3.png')
alogrithm=continous_ant_alogrithm(terrain_image=terrain_image,
target_x=250,
target_y=250,
start_x=150,
start_y=150,
ant_limit=500,
history_max_length=15,
update_cycle=100,
RRT_initialize=False)
# terrain_image=cv2.imread('map7-50x50.png')
# alogrithm=continous_ant_alogrithm(terrain_image=terrain_image,
# target_x=45,
# target_y=45,
# start_x=25,
# start_y=25)
ani = FuncAnimation(alogrithm.fig,
figure_update,
frames=range(1000000),
interval=1,
blit=False)
plt.show()