This repository has been archived by the owner on Nov 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathsample_for_pdb.py
245 lines (212 loc) · 9.67 KB
/
sample_for_pdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import argparse
import warnings
from easydict import EasyDict
from Bio import BiopythonWarning
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Selection import unfold_entities
from rdkit import Chem
from utils.protein_ligand import PDBProtein
from sample import * # Import everything from `sample.py`
def pdb_to_pocket_data(pdb_path, center, bbox_size):
center = torch.FloatTensor(center)
warnings.simplefilter('ignore', BiopythonWarning)
ptable = Chem.GetPeriodicTable()
parser = PDBParser()
model = parser.get_structure(None, pdb_path)[0]
protein_dict = EasyDict({
'element': [],
'pos': [],
'is_backbone': [],
'atom_to_aa_type': [],
})
for atom in unfold_entities(model, 'A'):
res = atom.get_parent()
resname = res.get_resname()
if resname == 'MSE': resname = 'MET'
if resname not in PDBProtein.AA_NAME_NUMBER: continue # Ignore water, heteros, and non-standard residues.
element_symb = atom.element.capitalize()
if element_symb == 'H': continue
x, y, z = atom.get_coord()
pos = torch.FloatTensor([x, y, z])
if (pos - center).abs().max() > (bbox_size / 2):
continue
protein_dict['element'].append( ptable.GetAtomicNumber(element_symb))
protein_dict['pos'].append(pos)
protein_dict['is_backbone'].append(atom.get_name() in ['N', 'CA', 'C', 'O'])
protein_dict['atom_to_aa_type'].append(PDBProtein.AA_NAME_NUMBER[resname])
if len(protein_dict['element']) == 0:
raise ValueError('No atoms found in the bounding box (center=%r, size=%f).' % (center, bbox_size))
protein_dict['element'] = torch.LongTensor(protein_dict['element'])
protein_dict['pos'] = torch.stack(protein_dict['pos'], dim=0)
protein_dict['is_backbone'] = torch.BoolTensor(protein_dict['is_backbone'])
protein_dict['atom_to_aa_type'] = torch.LongTensor(protein_dict['atom_to_aa_type'])
data = ProteinLigandData.from_protein_ligand_dicts(
protein_dict = protein_dict,
ligand_dict = {
'element': torch.empty([0,], dtype=torch.long),
'pos': torch.empty([0, 3], dtype=torch.float),
'atom_feature': torch.empty([0, 8], dtype=torch.float),
'bond_index': torch.empty([2, 0], dtype=torch.long),
'bond_type': torch.empty([0,], dtype=torch.long),
}
)
return data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pdb_path', type=str,
default='./example/4yhj.pdb')
parser.add_argument('--center', type=lambda s: list(map(float, s.split(','))),
default=[32.0, 28.0, 36.0],
help='Center of the pocket bounding box, in format x,y,z')
parser.add_argument('--bbox_size', type=float, default=23.0,
help='Pocket bounding box size')
parser.add_argument('--config', type=str, default='./configs/sample_for_pdb.yml')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--outdir', type=str, default='./outputs')
args = parser.parse_args()
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s-%s' % (
config_name,
os.path.basename(args.pdb_path),
))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
shutil.copyfile(args.pdb_path, os.path.join(log_dir, os.path.basename(args.pdb_path)))
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
contrastive_sampler = ContrastiveSample(num_real=0, num_fake=0)
masking = LigandMaskAll()
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
data = pdb_to_pocket_data(args.pdb_path, args.center, args.bbox_size)
data = transform(data)
# Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.main.checkpoint, map_location=args.device)
model = MaskFillModel(
ckpt['config'].model,
num_classes = contrastive_sampler.num_elements,
protein_atom_feature_dim = protein_featurizer.feature_dim,
ligand_atom_feature_dim = ligand_featurizer.feature_dim,
num_indicators = len(ATOM_FAMILIES)
).to(args.device)
model.load_state_dict(ckpt['model'])
# Model (Frontier Network)
logger.info('Loading frontier model...')
ckpt_ft = torch.load(config.model.frontier.checkpoint, map_location=args.device)
ftnet = FrontierNetwork(
ckpt_ft['config'].model,
protein_atom_feature_dim = protein_featurizer.feature_dim,
ligand_atom_feature_dim = ligand_featurizer.feature_dim,
).to(args.device)
ftnet.load_state_dict(ckpt_ft['model'])
# Sampling
# The algorithm is the same as the one `sample.py`.
pool = EasyDict({
'queue': [],
'failed': [],
'finished': [],
'duplicate': [],
'smiles': set(),
})
logger.info('Initialization')
pbar = tqdm(total=config.sample.num_samples, desc='InitSample')
while len(pool.queue) < config.sample.num_samples:
queue_size_before = len(pool.queue)
pool.queue += get_init_samples(
data = data.to(args.device),
model = model,
default_max_retry = config.sample.num_retry,
)
if len(pool.queue) > config.sample.num_samples:
pool.queue = pool.queue[:config.sample.num_samples]
pbar.update(len(pool.queue) - queue_size_before)
pbar.close()
print_pool_status(pool, logger)
logger.info('Saving samples...')
torch.save(pool, os.path.join(log_dir, 'samples_init.pt'))
logger.info('Start sampling')
global_step = 0
try:
while len(pool.finished) < config.sample.num_samples:
global_step += 1
queue_size = len(pool.queue)
queue_tmp = []
for data in tqdm(pool.queue):
nexts = []
data_next_list = get_next(
data.to(args.device),
ftnet = ftnet,
model = model,
logger = logger,
num_next = 5,
)
for data_next in data_next_list:
if data_next.status == STATUS_FINISHED:
try:
rdmol = reconstruct_from_generated(data_next)
smiles = Chem.MolToSmiles(rdmol)
data_next.smiles = smiles
data_next.rdmol = rdmol
valid = filter_rd_mol(rdmol)
if not valid:
logger.warning('Ignoring invalid molecule: %s' % smiles)
pool.failed.append(data_next)
elif smiles in pool.smiles:
logger.warning('Ignoring duplicate molecule: %s' % smiles)
pool.duplicate.append(data_next)
else: # Pass checks
logger.info('Success: %s' % smiles)
pool.finished.append(data_next)
pool.smiles.add(smiles)
except MolReconsError:
logger.warning('Ignoring, because reconstruction error encountered.')
pool.failed.append(data_next)
else:
if data_next.logp_history[-1] < config.sample.logp_thres:
if data_next.remaining_retry > 0:
data_next.remaining_retry -= 1
logger.info('[%s] Retrying, remaining %d retries' % (data.ligand_filename, data_next.remaining_retry))
nexts.append(random_roll_back(data_next))
else:
logger.info('[%s] Failed' % (data.ligand_filename,))
pool.failed.append(data_next)
else:
nexts.append(data_next)
queue_tmp += nexts
next_factor = 1.0
p_next = softmax(np.array([np.mean(data.logp_history) for data in queue_tmp]) * next_factor)
# print(np.arange(len(queue_tmp)), config.sample.beam_size)
next_idx = np.random.choice(
np.arange(len(queue_tmp)),
size=config.sample.beam_size,
replace=True,
p=p_next,
)
pool.queue = [queue_tmp[idx] for idx in next_idx]
print_pool_status(pool, logger)
torch.save(pool, os.path.join(log_dir, 'samples_%d.pt' % global_step))
except KeyboardInterrupt:
logger.info('Terminated. Generated molecules will be saved.')
torch.save(pool, os.path.join(log_dir, 'samples_all.pt'))
sdf_dir = os.path.join(log_dir, 'SDF')
os.makedirs(sdf_dir)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, data_finished in enumerate(pool['finished']):
smiles_f.write(data_finished.smiles + '\n')
writer = Chem.SDWriter(os.path.join(sdf_dir, '%d.sdf' % i))
writer.SetKekulize(False)
writer.write(data_finished.rdmol, confId=0)
writer.close()