-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathindex.iife.js
291 lines (291 loc) · 11.9 KB
/
index.iife.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
var simplifySvgPath=(()=>{/*
* simplify-svg-path
*
* The logic is a copy of Paper.js v0.12.11.
*/
/*
* Paper.js - The Swiss Army Knife of Vector Graphics Scripting.
* http://paperjs.org/
*
* Copyright (c) 2011 - 2020, Jürg Lehni & Jonathan Puckey
* http://juerglehni.com/ & https://puckey.studio/
*
* Distributed under the MIT license. See LICENSE file for details.
*
* All rights reserved.
*/
// An Algorithm for Automatically Fitting Digitized Curves
// by Philip J. Schneider
// from "Graphics Gems", Academic Press, 1990
// Modifications and optimizations of original algorithm by Jürg Lehni.
const EPSILON = 1e-12;
const MACHINE_EPSILON = 1.12e-16;
const isMachineZero = (val) => val >= -MACHINE_EPSILON && val <= MACHINE_EPSILON;
// `Math.sqrt(x * x + y * y)` seems to be faster than `Math.hypot(x, y)`
const hypot = (x, y) => Math.sqrt(x * x + y * y);
const point = (x, y) => ({ x, y });
const pointLength = (p) => hypot(p.x, p.y);
const pointNegate = (p) => point(-p.x, -p.y);
const pointAdd = (p1, p2) => point(p1.x + p2.x, p1.y + p2.y);
const pointSubtract = (p1, p2) => point(p1.x - p2.x, p1.y - p2.y);
const pointMultiplyScalar = (p, n) => point(p.x * n, p.y * n);
const pointDot = (p1, p2) => p1.x * p2.x + p1.y * p2.y;
const pointDistance = (p1, p2) => hypot(p1.x - p2.x, p1.y - p2.y);
const pointNormalize = (p, length = 1) => pointMultiplyScalar(p, length / (pointLength(p) || Infinity));
const createSegment = (p, i) => ({ p, i });
const fit = (points, closed, error) => {
// We need to duplicate the first and last segment when simplifying a
// closed path.
if (closed) {
points.unshift(points[points.length - 1]);
points.push(points[1]); // The point previously at index 0 is now 1.
}
const length = points.length;
if (length === 0) {
return [];
}
// To support reducing paths with multiple points in the same place
// to one segment:
const segments = [createSegment(points[0])];
fitCubic(points, segments, error, 0, length - 1,
// Left Tangent
pointSubtract(points[1], points[0]),
// Right Tangent
pointSubtract(points[length - 2], points[length - 1]));
// Remove the duplicated segments for closed paths again.
if (closed) {
segments.shift();
segments.pop();
}
return segments;
};
// Fit a Bezier curve to a (sub)set of digitized points
const fitCubic = (points, segments, error, first, last, tan1, tan2) => {
// Use heuristic if region only has two points in it
if (last - first === 1) {
const pt1 = points[first], pt2 = points[last], dist = pointDistance(pt1, pt2) / 3;
addCurve(segments, [pt1, pointAdd(pt1, pointNormalize(tan1, dist)), pointAdd(pt2, pointNormalize(tan2, dist)), pt2]);
return;
}
// Parameterize points, and attempt to fit curve
const uPrime = chordLengthParameterize(points, first, last);
let maxError = Math.max(error, error * error), split, parametersInOrder = true;
// Try not 4 but 5 iterations
for (let i = 0; i <= 4; i++) {
const curve = generateBezier(points, first, last, uPrime, tan1, tan2);
// Find max deviation of points to fitted curve
const max = findMaxError(points, first, last, curve, uPrime);
if (max.error < error && parametersInOrder) {
addCurve(segments, curve);
return;
}
split = max.index;
// If error not too large, try reparameterization and iteration
if (max.error >= maxError)
break;
parametersInOrder = reparameterize(points, first, last, uPrime, curve);
maxError = max.error;
}
// Fitting failed -- split at max error point and fit recursively
const tanCenter = pointSubtract(points[split - 1], points[split + 1]);
fitCubic(points, segments, error, first, split, tan1, tanCenter);
fitCubic(points, segments, error, split, last, pointNegate(tanCenter), tan2);
};
const addCurve = (segments, curve) => {
const prev = segments[segments.length - 1];
prev.o = pointSubtract(curve[1], curve[0]);
segments.push(createSegment(curve[3], pointSubtract(curve[2], curve[3])));
};
// Use least-squares method to find Bezier control points for region.
const generateBezier = (points, first, last, uPrime, tan1, tan2) => {
const epsilon = /*#=*/ EPSILON, abs = Math.abs, pt1 = points[first], pt2 = points[last],
// Create the C and X matrices
C = [
[0, 0],
[0, 0],
], X = [0, 0];
for (let i = 0, l = last - first + 1; i < l; i++) {
const u = uPrime[i], t = 1 - u, b = 3 * u * t, b0 = t * t * t, b1 = b * t, b2 = b * u, b3 = u * u * u, a1 = pointNormalize(tan1, b1), a2 = pointNormalize(tan2, b2), tmp = pointSubtract(pointSubtract(points[first + i], pointMultiplyScalar(pt1, b0 + b1)), pointMultiplyScalar(pt2, b2 + b3));
C[0][0] += pointDot(a1, a1);
C[0][1] += pointDot(a1, a2);
// C[1][0] += a1.dot(a2);
C[1][0] = C[0][1];
C[1][1] += pointDot(a2, a2);
X[0] += pointDot(a1, tmp);
X[1] += pointDot(a2, tmp);
}
// Compute the determinants of C and X
const detC0C1 = C[0][0] * C[1][1] - C[1][0] * C[0][1];
let alpha1;
let alpha2;
if (abs(detC0C1) > epsilon) {
// Kramer's rule
const detC0X = C[0][0] * X[1] - C[1][0] * X[0], detXC1 = X[0] * C[1][1] - X[1] * C[0][1];
// Derive alpha values
alpha1 = detXC1 / detC0C1;
alpha2 = detC0X / detC0C1;
}
else {
// Matrix is under-determined, try assuming alpha1 == alpha2
const c0 = C[0][0] + C[0][1], c1 = C[1][0] + C[1][1];
alpha1 = alpha2 = abs(c0) > epsilon ? X[0] / c0 : abs(c1) > epsilon ? X[1] / c1 : 0;
}
// If alpha negative, use the Wu/Barsky heuristic (see text)
// (if alpha is 0, you get coincident control points that lead to
// divide by zero in any subsequent NewtonRaphsonRootFind() call.
const segLength = pointDistance(pt2, pt1), eps = epsilon * segLength;
let handle1, handle2;
if (alpha1 < eps || alpha2 < eps) {
// fall back on standard (probably inaccurate) formula,
// and subdivide further if needed.
alpha1 = alpha2 = segLength / 3;
}
else {
// Check if the found control points are in the right order when
// projected onto the line through pt1 and pt2.
const line = pointSubtract(pt2, pt1);
// Control points 1 and 2 are positioned an alpha distance out
// on the tangent vectors, left and right, respectively
handle1 = pointNormalize(tan1, alpha1);
handle2 = pointNormalize(tan2, alpha2);
if (pointDot(handle1, line) - pointDot(handle2, line) > segLength * segLength) {
// Fall back to the Wu/Barsky heuristic above.
alpha1 = alpha2 = segLength / 3;
handle1 = handle2 = null; // Force recalculation
}
}
// First and last control points of the Bezier curve are
// positioned exactly at the first and last data points
return [pt1, pointAdd(pt1, handle1 || pointNormalize(tan1, alpha1)), pointAdd(pt2, handle2 || pointNormalize(tan2, alpha2)), pt2];
};
// Given set of points and their parameterization, try to find
// a better parameterization.
const reparameterize = (points, first, last, u, curve) => {
for (let i = first; i <= last; i++) {
u[i - first] = findRoot(curve, points[i], u[i - first]);
}
// Detect if the new parameterization has reordered the points.
// In that case, we would fit the points of the path in the wrong order.
for (let i = 1, l = u.length; i < l; i++) {
if (u[i] <= u[i - 1])
return false;
}
return true;
};
// Use Newton-Raphson iteration to find better root.
const findRoot = (curve, point, u) => {
const curve1 = [], curve2 = [];
// Generate control vertices for Q'
for (let i = 0; i <= 2; i++) {
curve1[i] = pointMultiplyScalar(pointSubtract(curve[i + 1], curve[i]), 3);
}
// Generate control vertices for Q''
for (let i = 0; i <= 1; i++) {
curve2[i] = pointMultiplyScalar(pointSubtract(curve1[i + 1], curve1[i]), 2);
}
// Compute Q(u), Q'(u) and Q''(u)
const pt = evaluate(3, curve, u), pt1 = evaluate(2, curve1, u), pt2 = evaluate(1, curve2, u), diff = pointSubtract(pt, point), df = pointDot(pt1, pt1) + pointDot(diff, pt2);
// u = u - f(u) / f'(u)
return isMachineZero(df) ? u : u - pointDot(diff, pt1) / df;
};
// Evaluate a bezier curve at a particular parameter value
const evaluate = (degree, curve, t) => {
// Copy array
const tmp = curve.slice();
// Triangle computation
for (let i = 1; i <= degree; i++) {
for (let j = 0; j <= degree - i; j++) {
tmp[j] = pointAdd(pointMultiplyScalar(tmp[j], 1 - t), pointMultiplyScalar(tmp[j + 1], t));
}
}
return tmp[0];
};
// Assign parameter values to digitized points
// using relative distances between points.
const chordLengthParameterize = (points, first, last) => {
const u = [0];
for (let i = first + 1; i <= last; i++) {
u[i - first] = u[i - first - 1] + pointDistance(points[i], points[i - 1]);
}
for (let i = 1, m = last - first; i <= m; i++) {
u[i] /= u[m];
}
return u;
};
// Find the maximum squared distance of digitized points to fitted curve.
const findMaxError = (points, first, last, curve, u) => {
let index = Math.floor((last - first + 1) / 2), maxDist = 0;
for (let i = first + 1; i < last; i++) {
const P = evaluate(3, curve, u[i - first]);
const v = pointSubtract(P, points[i]);
const dist = v.x * v.x + v.y * v.y; // squared
if (dist >= maxDist) {
maxDist = dist;
index = i;
}
}
return {
error: maxDist,
index: index,
};
};
const getSegmentsPathData = (segments, closed, precision) => {
const length = segments.length;
const precisionMultiplier = 10 ** precision;
const round = precision < 16 ? (n) => Math.round(n * precisionMultiplier) / precisionMultiplier : (n) => n;
const formatPair = (x, y) => round(x) + ',' + round(y);
let first = true;
let prevX, prevY, outX, outY;
const parts = [];
const addSegment = (segment, skipLine) => {
const curX = segment.p.x;
const curY = segment.p.y;
if (first) {
parts.push('M' + formatPair(curX, curY));
first = false;
}
else {
const inX = curX + (segment.i?.x ?? 0);
const inY = curY + (segment.i?.y ?? 0);
if (inX === curX && inY === curY && outX === prevX && outY === prevY) {
// l = relative lineto:
if (!skipLine) {
const dx = curX - prevX;
const dy = curY - prevY;
parts.push(dx === 0 ? 'v' + round(dy) : dy === 0 ? 'h' + round(dx) : 'l' + formatPair(dx, dy));
}
}
else {
// c = relative curveto:
parts.push('c' +
formatPair(outX - prevX, outY - prevY) +
' ' +
formatPair(inX - prevX, inY - prevY) +
' ' +
formatPair(curX - prevX, curY - prevY));
}
}
prevX = curX;
prevY = curY;
outX = curX + (segment.o?.x ?? 0);
outY = curY + (segment.o?.y ?? 0);
};
if (!length)
return '';
for (let i = 0; i < length; i++)
addSegment(segments[i]);
// Close path by drawing first segment again
if (closed && length > 0) {
addSegment(segments[0], true);
parts.push('z');
}
return parts.join('');
};
const simplifySvgPath = (points, options = {}) => {
if (points.length === 0) {
return '';
}
return getSegmentsPathData(fit(points.map(typeof points[0].x === 'number' ? (p) => point(p.x, p.y) : (p) => point(p[0], p[1])), options.closed, options.tolerance ?? 2.5), options.closed, options.precision ?? 5);
};
return simplifySvgPath;
})()