-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMLNETONNXEmbeddingGenerator.cs
173 lines (133 loc) · 6.78 KB
/
MLNETONNXEmbeddingGenerator.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#pragma warning disable SYSLIB5001
using Microsoft.ML.Tokenizers;
using System.Numerics.Tensors;
using Microsoft.Extensions.AI;
using Microsoft.ML.Transforms;
using Microsoft.ML;
using Microsoft.ML.Data;
public class MLNETOnnxEmbeddingGenerator : IEmbeddingGenerator<string, Embedding<float>>
{
private readonly Tokenizer _tokenizer;
private readonly string? _modelPath;
public EmbeddingGeneratorMetadata Metadata {get;}
public MLNETOnnxEmbeddingGenerator(Tokenizer tokenizer, string? modelPath = "")
{
_tokenizer = tokenizer;
_modelPath = modelPath;
Metadata = new EmbeddingGeneratorMetadata("MLNETOnnxEmbeddingGenerator");
}
public void Dispose()
{
throw new NotImplementedException();
}
public Task<GeneratedEmbeddings<Embedding<float>>> GenerateAsync(IEnumerable<string> values, EmbeddingGenerationOptions? options = null, CancellationToken cancellationToken = default)
{
// 1. Convert text to tokens
var input = Preprocess(_tokenizer, values);
// 2. Use ML.NET and ONNX to generate embeddings
var output = Infer(_tokenizer, input);
// 3. Post-process model outputs
var attentionMask = input.First().AttentionMask;
var pooled = MeanPooling(output, attentionMask, new long[] { 1, attentionMask.Length, output.Length / attentionMask.Length });
var normalized = NormalizeAndDivide(pooled, new long[] { 1, attentionMask.Length, output.Length / attentionMask.Length });
// Return embeddings
var embedding = new Embedding<float>(normalized);
return Task.FromResult(new GeneratedEmbeddings<Embedding<float>>([embedding]));
}
public TService? GetService<TService>(object? key = null) where TService : class
{
throw new NotImplementedException();
}
private float[] Infer(Tokenizer tokenizer, IEnumerable<ModelInput> input)
{
var ctx = new MLContext();
var dv = ctx.Data.LoadFromEnumerable(input);
var pipeline =
ctx.Transforms.ApplyOnnxModel(_modelPath);
var result = pipeline.Fit(dv).Transform(dv);
var embeddings = result.GetColumn<float[]>("last_hidden_state").First();
return embeddings;
}
private IEnumerable<ModelInput> Preprocess(Tokenizer tokenizer, IEnumerable<string> text)
{
// Tokenize text
var tokens = tokenizer.EncodeToIds(text.ToString() ?? "");
var input = new ModelInput{
InputIds = tokens.Select(t => (long)t).ToArray(),
AttentionMask = tokens.Select(t => 1L).ToArray(),
TokenTypeIds = tokens.Select(t => 0L).ToArray()
};
// Return input
return [input];
}
private float[] MeanPooling(float[] embeddings, long[] attentionMask, long[] shape)
{
//// Extract shapes
var batchSize = (int)shape[0];
var sequenceLength = (int)shape[1];
var embeddingSize = (int)shape[2];
// Create a tensor for attention mask
var attentionMaskTensor = Tensor.ConvertSaturating<long, float>(Tensor.Create<long>(attentionMask, [batchSize, sequenceLength]));
// Create a tensor for token embeddings
var tokenEmbeddings = new ReadOnlyTensorSpan<float>(embeddings, [(nint)batchSize, (nint)sequenceLength, (nint)embeddingSize], []);
// Add a dimension to attention mask [2,11,1]
var unsqueezed = Tensor.Unsqueeze(attentionMaskTensor, 2);
// Expand Attention [2,11,384]
var expandedAttention = Tensor.Broadcast<float>(unsqueezed, tokenEmbeddings.Lengths);
// Multiply unsqueezed tensor with token embeddings [2,11,384]
// Implicit broadcasting
var lhs = Tensor.Multiply<float>(unsqueezed, tokenEmbeddings);
// Contains intermediate calculator of embedding and attention
// Tensors summed across the first axis.
// Results in tensor shapes [2,384]
var numerator = Tensor.Create<float>([batchSize, embeddingSize]);
var denominator = Tensor.Create<float>([batchSize, embeddingSize]);
// Apply sums along first axis.
for (var batch = 0; batch < batchSize; batch++)
{
var sumEmbedding = Tensor.Create<float>([1, embeddingSize]);
var sumAttention = Tensor.Create<float>([1, embeddingSize]);
for (var sequence = 0; sequence < sequenceLength; sequence++)
{
var embeddingSlice =
Tensor.Squeeze(lhs.Slice([batch..(batch + 1), sequence..(sequence + 1), 0..embeddingSize]));
var attentionSlice =
Tensor.Squeeze(expandedAttention.Slice([batch..(batch + 1), sequence..(sequence + 1), 0..embeddingSize]));
sumEmbedding = Tensor.Add<float>(sumEmbedding, embeddingSlice);
sumAttention = Tensor.Add<float>(sumAttention, attentionSlice);
}
Tensor.SetSlice(numerator, sumEmbedding, [batch..(batch + 1), 0..embeddingSize]);
Tensor.SetSlice(denominator, sumAttention, [batch..(batch + 1), 0..embeddingSize]);
}
// Divide numerator by denominator. Mean pooling.
var result = Tensor.Divide<float>(numerator, denominator);
// Return result
return result.ToArray();
}
private float[] NormalizeAndDivide(float[] sentenceEmbeddings, long[] shape)
{
long batchSize = shape[0];
int embeddingSize = (int)shape[2];
// Create a tensor for the square of the embeddings
var squaredEmbeddings = Tensor.Multiply<float>(sentenceEmbeddings, sentenceEmbeddings);
// Create Tensor for sumSquaredEmbeddings
var sumSquaredEmbeddings = Tensor.Create<float>([(nint)batchSize, 1]);
// Sum the squared embeddings across the embedding dimension
for (var batch = 0; batch < batchSize; batch++)
{
// Get the embeddings for the current batch
var embeddings = squaredEmbeddings.Slice([0..embeddingSize]);
// Sum the embeddings across the embedding dimension
var clampedSumEmbedding = Math.Max(Tensor.Sum<float>(embeddings), 1e-9f);
var sumEmbeddings = Tensor.Create<float>(new float[] { clampedSumEmbedding }, [1, 1]);
// Set the sum of the squared embeddings for the current batch
sumSquaredEmbeddings[(ReadOnlySpan<nint>)[batch, 0]] = sumEmbeddings[(ReadOnlySpan<nint>)[0, 0]];
}
// Calculate the square root of the sum of the squared embeddings
var sqrtSumSquaredEmbeddings = Tensor.Sqrt<float>(sumSquaredEmbeddings);
// Divide the sentence embeddings by the denominator
var normalizedEmbeddings = Tensor.Divide<float>(sentenceEmbeddings, sqrtSumSquaredEmbeddings);
// Return the normalized embeddings
return normalizedEmbeddings.ToArray();
}
}