-
Notifications
You must be signed in to change notification settings - Fork 278
/
Copy pathgenerate_simple_kitti_anno_file.py
executable file
·55 lines (43 loc) · 1.7 KB
/
generate_simple_kitti_anno_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
this file will load all kitti original label file into
a single file from which we can index every image and its
bounding boxes
Usage:
python2 generate_simple_kitti_anno_file.py \
/media/jintian/Netac/Datasets/Kitti/object/training/image_2 \
/media/jintian/Netac/Datasets/Kitti/object/training/label_2
"""
from __future__ import print_function, division
import numpy as np
import os
import sys
def generate(img_dir_, label_dir_):
"""
convert kitti data into a single txt file, with this format:
Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01
type, truncated, occluded, alpha,
:param img_dir_:
:param label_dir_:
:return:
"""
if not os.path.exists(label_dir_):
print('label dir: {} doest not exist'.format(label_dir_))
exit(0)
all_label_files = [i for i in os.listdir(label_dir_) if i.endswith('.txt')]
print('got {} label files.'.format(len(all_label_files)))
all_img_lables = []
target_file = open('kitti_simple_label.txt', 'w')
for label_file_name in all_label_files:
label_file = os.path.join(label_dir_, label_file_name)
with open(label_file, 'r') as f:
for l in f.readlines():
class_name, _, _, _, x1, y1, x2, y2, _, _, _, _, _, _, _ = l.strip().split(' ')
target_file.write('{},{},{},{},{},{}\n'.format(
os.path.join(img_dir_, label_file_name.replace('txt', 'png')),
x1, y1, x2, y2, class_name))
target_file.close()
print('convert finished.')
if __name__ == '__main__':
img_dir = sys.argv[1]
label_dir = sys.argv[2]
generate(img_dir, label_dir)