forked from t57root/amcsh
-
Notifications
You must be signed in to change notification settings - Fork 1
/
sha1.c
329 lines (294 loc) · 10.9 KB
/
sha1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
* Copyright 2010 Google Inc.
* Author: Markus Gutschke
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* An earlier version of this file was originally released into the public
* domain by its authors. It has been modified to make the code compile and
* link as part of the Google Authenticator project. These changes are
* copyrighted by Google Inc. and released under the Apache License,
* Version 2.0.
*
* The previous authors' terms are included below:
*/
/*****************************************************************************
*
* File: sha1.c
*
* Purpose: Implementation of the SHA1 message-digest algorithm.
*
* NIST Secure Hash Algorithm
* Heavily modified by Uwe Hollerbach <[email protected] edu>
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* Further modifications to include the "UNRAVEL" stuff, below
*
* This code is in the public domain
*
*****************************************************************************
*/
#define _BSD_SOURCE
#include <sys/types.h> // Defines BYTE_ORDER, iff _BSD_SOURCE is defined
#include <string.h>
#include "sha1.h"
#if !defined(BYTE_ORDER)
#if defined(_BIG_ENDIAN)
#define BYTE_ORDER 4321
#elif defined(_LITTLE_ENDIAN)
#define BYTE_ORDER 1234
#else
#error Need to define BYTE_ORDER
#endif
#endif
#ifndef TRUNC32
#define TRUNC32(x) ((x) & 0xffffffffL)
#endif
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* truncate to 32 bits -- should be a null op on 32-bit machines */
#define T32(x) ((x) & 0xffffffffL)
/* 32-bit rotate */
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
/* the generic case, for when the overall rotation is not unraveled */
#define FG(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B,30); B = A; A = T
/* specific cases, for when the overall rotation is unraveled */
#define FA(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
#define FB(n) \
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
#define FC(n) \
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
#define FD(n) \
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
#define FE(n) \
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
#define FT(n) \
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
static void
sha1_transform(SHA1_INFO *sha1_info)
{
int i;
uint8_t *dp;
uint32_t T, A, B, C, D, E, W[80], *WP;
dp = sha1_info->data;
#undef SWAP_DONE
#if BYTE_ORDER == 1234
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] =
((T << 24) & 0xff000000) |
((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTE_ORDER == 4321
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] = TRUNC32(T);
}
#endif
#if BYTE_ORDER == 12345678
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
T = *((uint32_t *) dp);
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTE_ORDER == 87654321
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
T = *((uint32_t *) dp);
dp += 8;
W[i] = TRUNC32(T >> 32);
W[i+1] = TRUNC32(T);
}
#endif
#ifndef SWAP_DONE
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] = TRUNC32(T);
}
#endif /* SWAP_DONE */
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
W[i] = R32(W[i], 1);
}
A = sha1_info->digest[0];
B = sha1_info->digest[1];
C = sha1_info->digest[2];
D = sha1_info->digest[3];
E = sha1_info->digest[4];
WP = W;
#ifdef UNRAVEL
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
sha1_info->digest[0] = T32(sha1_info->digest[0] + E);
sha1_info->digest[1] = T32(sha1_info->digest[1] + T);
sha1_info->digest[2] = T32(sha1_info->digest[2] + A);
sha1_info->digest[3] = T32(sha1_info->digest[3] + B);
sha1_info->digest[4] = T32(sha1_info->digest[4] + C);
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) { FG(1); }
for (i = 20; i < 40; ++i) { FG(2); }
for (i = 40; i < 60; ++i) { FG(3); }
for (i = 60; i < 80; ++i) { FG(4); }
#endif /* !UNROLL_LOOPS */
sha1_info->digest[0] = T32(sha1_info->digest[0] + A);
sha1_info->digest[1] = T32(sha1_info->digest[1] + B);
sha1_info->digest[2] = T32(sha1_info->digest[2] + C);
sha1_info->digest[3] = T32(sha1_info->digest[3] + D);
sha1_info->digest[4] = T32(sha1_info->digest[4] + E);
#endif /* !UNRAVEL */
}
/* initialize the SHA digest */
void
sha1_init(SHA1_INFO *sha1_info)
{
sha1_info->digest[0] = 0x67452301L;
sha1_info->digest[1] = 0xefcdab89L;
sha1_info->digest[2] = 0x98badcfeL;
sha1_info->digest[3] = 0x10325476L;
sha1_info->digest[4] = 0xc3d2e1f0L;
sha1_info->count_lo = 0L;
sha1_info->count_hi = 0L;
sha1_info->local = 0;
}
/* update the SHA digest */
void
sha1_update(SHA1_INFO *sha1_info, const uint8_t *buffer, int count)
{
int i;
uint32_t clo;
clo = T32(sha1_info->count_lo + ((uint32_t) count << 3));
if (clo < sha1_info->count_lo) {
++sha1_info->count_hi;
}
sha1_info->count_lo = clo;
sha1_info->count_hi += (uint32_t) count >> 29;
if (sha1_info->local) {
i = SHA1_BLOCKSIZE - sha1_info->local;
if (i > count) {
i = count;
}
memcpy(((uint8_t *) sha1_info->data) + sha1_info->local, buffer, i);
count -= i;
buffer += i;
sha1_info->local += i;
if (sha1_info->local == SHA1_BLOCKSIZE) {
sha1_transform(sha1_info);
} else {
return;
}
}
while (count >= SHA1_BLOCKSIZE) {
memcpy(sha1_info->data, buffer, SHA1_BLOCKSIZE);
buffer += SHA1_BLOCKSIZE;
count -= SHA1_BLOCKSIZE;
sha1_transform(sha1_info);
}
memcpy(sha1_info->data, buffer, count);
sha1_info->local = count;
}
static void
sha1_transform_and_copy(unsigned char digest[20], SHA1_INFO *sha1_info)
{
sha1_transform(sha1_info);
digest[ 0] = (unsigned char) ((sha1_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsigned char) ((sha1_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsigned char) ((sha1_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsigned char) ((sha1_info->digest[0] ) & 0xff);
digest[ 4] = (unsigned char) ((sha1_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha1_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha1_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha1_info->digest[1] ) & 0xff);
digest[ 8] = (unsigned char) ((sha1_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsigned char) ((sha1_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha1_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha1_info->digest[2] ) & 0xff);
digest[12] = (unsigned char) ((sha1_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha1_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha1_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha1_info->digest[3] ) & 0xff);
digest[16] = (unsigned char) ((sha1_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha1_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha1_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha1_info->digest[4] ) & 0xff);
}
/* finish computing the SHA digest */
void
sha1_final(SHA1_INFO *sha1_info, uint8_t digest[20])
{
int count;
uint32_t lo_bit_count, hi_bit_count;
lo_bit_count = sha1_info->count_lo;
hi_bit_count = sha1_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((uint8_t *) sha1_info->data)[count++] = 0x80;
if (count > SHA1_BLOCKSIZE - 8) {
memset(((uint8_t *) sha1_info->data) + count, 0, SHA1_BLOCKSIZE - count);
sha1_transform(sha1_info);
memset((uint8_t *) sha1_info->data, 0, SHA1_BLOCKSIZE - 8);
} else {
memset(((uint8_t *) sha1_info->data) + count, 0,
SHA1_BLOCKSIZE - 8 - count);
}
sha1_info->data[56] = (uint8_t)((hi_bit_count >> 24) & 0xff);
sha1_info->data[57] = (uint8_t)((hi_bit_count >> 16) & 0xff);
sha1_info->data[58] = (uint8_t)((hi_bit_count >> 8) & 0xff);
sha1_info->data[59] = (uint8_t)((hi_bit_count >> 0) & 0xff);
sha1_info->data[60] = (uint8_t)((lo_bit_count >> 24) & 0xff);
sha1_info->data[61] = (uint8_t)((lo_bit_count >> 16) & 0xff);
sha1_info->data[62] = (uint8_t)((lo_bit_count >> 8) & 0xff);
sha1_info->data[63] = (uint8_t)((lo_bit_count >> 0) & 0xff);
sha1_transform_and_copy(digest, sha1_info);
}
/***EOF***/