-
Notifications
You must be signed in to change notification settings - Fork 1
/
NO598. Range Addition II.java
49 lines (43 loc) · 1.41 KB
/
NO598. Range Addition II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/**
* Given an m * n matrix M initialized with all 0's and several update operations.
Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.
You need to count and return the number of maximum integers in the matrix after performing all the operations.
Example 1:
Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]]
After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]]
So the maximum integer in M is 2, and there are four of it in M. So return 4.
*
*
* 题意:给你一个全0的M*N的矩阵,进行一系列操作,操作为一系列二位数组【a,b】,
* 意为:将从[0][0]到[a][b]这个子矩阵值+1;问一系列操作后矩阵中最大的元素的个数。
* 思路:我们发现每次操作的矩阵都是从[0][0]开始的,也就是说每次操作都有重复部分。那么这个重复部分就参与了
* 所有操作,也必然是最大的。我们只要维护k个矩阵的交即可。
*
*
*/
class Solution {
public int maxCount(int m, int n, int[][] ops) {
int ansx=400000,ansy=400000;
if(ops.length==0) return m*n;
for(int i=0;i<ops.length;i++){
ansx=Math.min(ansx,ops[i][0]);
ansy=Math.min(ansy,ops[i][1]);
}
return ansx*ansy;
}
}