-
Notifications
You must be signed in to change notification settings - Fork 22
/
ComputeStateMatrix.m
182 lines (162 loc) · 6.77 KB
/
ComputeStateMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function stateCollectMat = ComputeStateMatrix(inputSequence,outputSequence,esn,nForgetPoints,varargin)
% compute_statematrix runs the input through the ESN and writes the
% obtained input+reservoir states into stateCollectMat.
% The first nForgetPoints will be deleted, as the first few states could be
% not reliable due to initial transients
%
% inputs:
% inputSequence = input time series of size nTrainingPoints x nInputDimension
% outputSequence = output time series of size nTrainingPoints x nOutputDimension
% esn = an ESN structure, through which we run our input sequence
% nForgetPoints: an integer, may be negative, positive or zero.
% If positive: the first nForgetPoints will be disregarded (washing out
% initial reservoir transient)
% If negative: the network will be initially driven from zero state with
% the first input repeated |nForgetPoints| times; size(inputSequence,1)
% many states will be sorted into state matrix
% If zero: no washout accounted for, all states except the zero starting
% state will be sorted into state matrix
%
% Note: one of inputSequence and outputSequence may be the empty list [],
% but not both. If the inputSequence is empty, we are dealing with a purely
% generative task; states are then computed by teacher-forcing
% outputSequence. If outputSequence is empty, we are using this function to
% test a trained ESN; network output is then computed from network dynamics
% via output weights. If both are non-empty, states are computed by
% teacher-forcing outputSequence.
%
% optional input argument:
% there may be one optional input, the starting vector by which the esn is
% started. The starting vector must be given as a column vector of
% dimension esn.nInternalUnits + esn.nInputUnits + esn.nOutputUnits (that
% is, it is a total state, not an internal reservoir state). If this input
% is desired, call test_esn with fourth input 'startingState' and fifth
% input the starting vector.
%
% output:
% stateCollectMat = matrix of size (nTrainingPoints-nForgetPoints) x
% nInputUnits + nInternalUnits
% stateCollectMat(i,j) = internal activation of unit j after the
% (i + nForgetPoints)th training point has been presented to the network
%
% Version 1.0, April 30, 2006
% Copyright: Fraunhofer IAIS 2006 / Patents pending
% Revision 1, June 6, 2006, H. Jaeger
% Revision 2, June 23, 2007, H. Jaeger (added optional starting state
% input)
% Revision 3, July 1, 2007, H. Jaeger (added leaky1_esn update option)
% Revision 4, Apr 24, 2010, H. Jaeger: reworded header text to avoid an
% ambiguity
if isempty(inputSequence) && isempty(outputSequence)
error('error in compute_statematrix: two empty input args');
end
if isempty(outputSequence)
teacherForcing = 0;
nDataPoints = length(inputSequence(:,1));
else
teacherForcing = 1;
nDataPoints = length(outputSequence(:,1));
end
if nForgetPoints >= 0
stateCollectMat = zeros(nDataPoints - nForgetPoints, esn.nInputUnits + esn.nInternalUnits) ;
else
stateCollectMat = zeros(nDataPoints, esn.nInputUnits + esn.nInternalUnits) ;
end
%% Set starting state
externalStartStateFlag = 0;
args = varargin;
nargs= length(args);
for i=1:2:nargs
switch args{i},
case 'startingState',
totalstate = args{i+1} ;
internalState = totalstate(1:esn.nInternalUnits,1) ;
externalStartStateFlag = 1;
otherwise
error('the option does not exist');
end
end
if externalStartStateFlag == 0
totalstate = zeros(esn.nInputUnits + esn.nInternalUnits + esn.nOutputUnits, 1);
internalState = zeros(esn.nInternalUnits, 1);
end
%%%% if nForgetPoints is negative, ramp up ESN by feeding first input
%%%% |nForgetPoints| many times
if nForgetPoints < 0
for i = 1:-nForgetPoints
if esn.nInputUnits > 0
in = esn.inputScaling .* inputSequence(1,:)' + esn.inputShift; % in is column vector
else in = [];
end
if esn.nInputUnits > 0
totalstate(esn.nInternalUnits+1:esn.nInternalUnits + esn.nInputUnits) = in;
end
% the internal state is computed based on the type of the network
switch esn.type
case 'plain_esn'
typeSpecificArg = [];
case 'leaky_esn'
typeSpecificArg = [];
case 'leaky1_esn'
typeSpecificArg = [];
case 'twi_esn'
if esn.nInputUnits == 0
error('twi_esn cannot be used without input to ESN');
end
typeSpecificArg = esn.avDist;
end
internalState = feval(esn.type,totalstate,esn,typeSpecificArg) ;
if teacherForcing
netOut = esn.teacherScaling .* outputSequence(1,:)' + esn.teacherShift;
else
netOut = feval(esn.outputActivationFunction, esn.outputWeights * [internalState; in]);
end
totalstate = [internalState; in; netOut];
end
end
collectIndex = 0;
for i = 1:nDataPoints
% scale and shift the value of the inputSequence
if esn.nInputUnits > 0
in = esn.inputScaling .* inputSequence(i,:)' + esn.inputShift; % in is column vector
else in = [];
end
% write input into totalstate
if esn.nInputUnits > 0
totalstate(esn.nInternalUnits+1:esn.nInternalUnits + esn.nInputUnits) = in;
end
% the internal state is computed based on the type of the network
switch esn.type
case 'plain_esn'
typeSpecificArg = [];
case 'leaky_esn'
typeSpecificArg = [];
case 'leaky1_esn'
typeSpecificArg = [];
case 'twi_esn'
if esn.nInputUnits == 0
error('twi_esn cannot be used without input to ESN');
end
if i == 1
typeSpecificArg = esn.avDist;
else
typeSpecificArg = norm(inputSequence(i,:) - inputSequence(i-1,:));
end
end
internalState = feval(esn.type, totalstate, esn, typeSpecificArg) ;
if teacherForcing
netOut = esn.teacherScaling .* outputSequence(i,:)' + esn.teacherShift;
else
netOut = feval(esn.outputActivationFunction, esn.outputWeights * [internalState; in]);
end
totalstate = [internalState; in; netOut];
%collect state
if nForgetPoints >= 0 && i > nForgetPoints
collectIndex = collectIndex + 1;
stateCollectMat(collectIndex,:) = [internalState' in'];
elseif nForgetPoints < 0
collectIndex = collectIndex + 1;
stateCollectMat(collectIndex,:) = [internalState' in'];
end
end
end