Skip to content

Latest commit

 

History

History
1262 lines (972 loc) · 52.3 KB

RELEASES.md

File metadata and controls

1262 lines (972 loc) · 52.3 KB

Version 3.0-rc8 (UNRELEASED)

This is the 8th release candidate for ink! 3.0.

Change

  • Renamed the ink_env function transferred_balance() to transferred_value()#1063.

Version 3.0-rc7

This is the 7th release candidate for ink! 3.0.

Since our last release candidate we implemented a number of contract size improvements. With those improvements the size of our erc20 example has reduced significantly:

Release Build with cargo-contract
erc20 3.0.0-rc6 29.3 K
erc20 3.0.0-rc7 10.4 K

The savings apply partly to our other examples; for erc20 they are most significant since it has been migrated to use a new Mapping data structure, which we introduce with this release candidate. The other examples will be migrated to this new data structure as a next step.

Compatibility

You need to upgrade to a new version of the contracts pallet in order to use this ink! release. This is because we upgraded to a newer seal_call API. Specifically you need to upgrade to at least the pallet version e9fca0f (or newer than Nov 24).

Removed

  • Removed the state rent API ‒ #1036.

Added

  • Added support for wildcard selectors ‒ #1020.
    • This enables writing upgradable smart contracts using the proxy/forward pattern. We added a new example to illustrate this ‒ the proxy example.
    • Annotating a wildcard selector in traits is not supported.
  • The ink! codegen now heavily relies on static type information based on traits defined in ink_lang#665.
    • Some of those traits and their carried information can be used for static reflection of ink! smart contracts. Those types and traits reside in the new ink_lang::reflect module and is publicly usable by ink! smart contract authors.

Changed

  • Upgraded to the seal_call v1 API ‒ #960.
    • This API now enables control over the behavior of cross-contract calls, e.g. to forward/clone input, enable tail calls and control reentrancy. The crate documentation contains more details on the CallFlags.
    • Note: The default behavior of cross-contract calls now disallows reentering the calling contract.
  • ink! contract definitions via #[ink::contract]#665.
    For ink! smart contracts we now generate two contract types. Given MyContract:
    • MyContract will still be the storage struct. However, it can now additionally be used as static dependency in other smart contracts. Static dependencies can be envisioned as being directly embedded into a smart contract.
    • MyContractRef is pretty much the same of what we had gotten with the old ink-as-dependency. It is a typed thin-wrapper around an AccountId that is mirroring the ink! smart contract's API and implemented traits.
  • ink! trait definitions via #[ink::trait_definition]#665.
    • ink! trait definitions no longer can define trait constructors.
    • ink! trait implementations now inherit selector and payable properties for trait messages.
      • Now explicitly setting selector or payable property for an implemented ink! trait method will only act as a guard that the set property is in fact the same as defined by the ink! trait definition.
  • Improved some ink! specific compile errors ‒ #665.
    • For example, when using ink! messages and constructors which have inputs (or outputs) that cannot be encoded (or decoded) using the SCALE codec.
  • Simplified selector computation for ink! trait methods ‒ #665.
    • Now selectors are encoded as blake2b({namespace}::{trait_identifier}::{message_identifier})[0..4]. If no namespace is set for the ink! trait definition then the formula is blake2b({trait_identifier}::{message_identifier})[0..4]. Where trait_identifier and message_identifier both refer to the identifiers of the ink! trait definition and ink! trait message respectively.
  • We switched to Rust edition 2021 ‒ #977.
  • Update chain extension example to show argument passing ‒ #1029.

Fixed

  • Contracts now revert the transaction if an ink! message returns Result::Err#975, #998.
    • It is still possible to match against a Result return type for a called dependency contract ‒ i.e. a sub-contract specified in the contract's Cargo.toml.
  • We implemented a number of Wasm contract size improvements:
    • Simple Mapping Storage Primitive ‒ #946.
    • Remove always from inline to allow compiler decide that to do ‒ #1012 (thanks @xgreenx).
    • Add a way to allocate a storage facility using spread (and packed) layouts ‒ #978.
    • Extract non-generic part of push_topic to reduce code size ‒ #1026.

Version 3.0-rc6

This is the 6th release candidate for ink! 3.0.

Compatibility

Please upgrade cargo-contract

You need to update to the latest cargo-contract in order to use this release:

cargo install cargo-contract --vers ^0.15 --force --locked

If you build contracts from this release candidate with an older cargo-contract, the UI's won't display all contract-relevant fields.

Please upgrade scale-info in your contract's dependencies

In this release candidate we upgraded scale-info. You have to use a compatible version in your contract's Cargo.toml as well; cargo-contract will throw an error otherwise.

The Cargo.toml should contain

scale-info = { version = "1.0", default-features = false, features = ["derive"], optional = true }
scale = { package = "parity-scale-codec", version = "2", default-features = false, features = ["derive", "full"] }

New metadata format

There are breaking changes to the metadata format in this release.

Added

  • Added an Ethereum-compatibility function to recover a public key from an ECDSA signature and message hash - #914 (thanks @xgreenx).
  • Added new utility proc. macros to ink_lang crate - #947:
    • blake2!: Compute the BLAKE2b 256-bit hash of the given input literal string.
    • selector_bytes!: Compute the ink! selector of the given input literal string and return it as [u8; 4].
    • selector_id!: Compute the ink! selector of the given input literal string and return it as u32.

Changed

  • Update to scale-info 1.0 - #845.
  • Message and constructor selectors no longer take their inputs as string, but as u32 decodable integer - #928.
    For example:
    • It is no longer possible to specify a selector as #[ink(selector = "0xC0DECAFE")].
    • The newly allowed formats are #[ink(selector = 0xC0DECAFE)] and #[ink(selector = 42)].
    • Smart contract authors are required to update their smart contracts for this change.
  • Improved the multisig example - #962.
  • Changed the link to our beginner's workshop to the migrated workshop on substrate.io - #957.

Fixed

  • Fixed a mistake in the ink_env::block_timestamp() documentation - #937.

Version 3.0-rc5 (2021-09-08)

This is the 5th release candidate for ink! 3.0.

The list below shows the additions, changes and fixes that are visible to users of ink!.

Compatibility

Make sure to use a recent Rust nightly and cargo-contract with the current release:

cargo install cargo-contract --vers ^0.14 --force --locked && rustup update

In the past we recommended using our canvas-node for local contract development and testing. We've now migrated this node to be run as a Parachain. This new setup comes with some additional overhead though (such as requiring a local Polkadot installation); for local development this is often unnecessary.

We've therefore created a new project, the substrate-contracts-node. It fulfills the same purpose the canvas-node did before ‒ it's a standalone node which is just Substrate's node-template modified to include the contracts pallet. You can install the newest version like this:

cargo install contracts-node --git https://github.com/paritytech/substrate-contracts-node.git --force

After you've installed the node it can be run via substrate-contracts-node --tmp --dev.

Added

  • Added example for mocking chain extensions in off-chain tests ‒ #882.
  • Panic messages are now printed to debug buffer ‒ #894.

Changed

  • Unlicensed smart contract examples ‒ #888.
  • Stabilized seal_debug_message#902.

Version 3.0-rc4 (2021-07-19)

This is the 4th release candidate for ink! 3.0.

The list below shows the additions, changes and fixes that are visible to users of ink!.

Compatibility

ink! 3.0-rc4 is compatible with

  • The "ink! CLI" cargo-contract version 0.13.0 or newer.
    • Install the newest version using cargo install --force cargo-contract.
  • Substrate version 4.0.0-dev including the contracts-pallet version 4.0.0-dev.
  • substrate-contracts-node version 0.1.0 or newer.
    • Install the newest version using cargo install contracts-node --git https://github.com/paritytech/substrate-contracts-node.git --force.

The documentation on our Documentation Portal is up-to-date with this release candidate. Since the last release candidate we notably added a number of Frequently Asked Questions there.

Quality Assurance

In order to ensure a continuously high quality of our codebase we implemented a number of key improvements to our testing setup:

  • We've put an emphasis on automated testing of the usage examples in our crate documentation. Those are now tested in the context of a complete ink! contract. In the past this was not always the case, sometimes usage examples were just isolated code snippets.
  • We started our ink-waterfall project, which runs End-to-End tests through our entire stack. All our examples are continuously built using the latest cargo-contract. They are subsequently deployed on the latest substrate-contracts-node by emulating browser interactions with both the canvas-ui and the polkadot-js UI. This testing setup enables us to detect bugs which only appear in the context of using multiple components together early on.
  • To improve the readability of our documentation we introduced automated grammar and spell checking into our Continuous Integration environment.

Added

  • Added support for the new seal_random API ‒ #734.
  • Added missing documentation for the ink_storage_derive procedural macros ‒ #711.
  • Implemented the (unstable) seal_rent_params API ‒ #755.
  • Implemented the (unstable) seal_rent_status API ‒ #798.
  • Implemented the (unstable) seal_debug_message API ‒ #792.
    • Printing debug messages can now be achieved via ink_env::debug_println!(…).
    • See our documentation for more information.
    • The examples have been updated to reflect this new way of printing debug messages.
  • Added usage comments with code examples to the ink_env API ‒ #797.
  • Added an example implementation for ERC-1155, a multi-token standard ‒ #800.
  • Implemented binary search for collections::Vec#836.
  • Added the ability of submitting payable transactions to the multisig example ‒ #820.
  • Implemented Decode for Error types in the examples, enabling building them as dependencies ‒ #761.
  • We started working on a new off-chain environment testing engine ‒ #712.
    • The old testing environment has a number of limitations, which we are well aware of. We're confident that with the new testing engine we will be able to conduct much more elaborate testing in an emulated chain environment.
    • For the moment, the new engine is unstable and only available behind a feature flag. A number of examples have already been converted to support the new testing engine.

Changed

  • To reduce a contract's space footprint we switched the default allocator to a bump allocator implementation ‒ #831.
  • A couple of readme's have been reworked:
    • Our main ink! readme ‒ #774.
    • The rand-extension example readme ‒ #793.
    • The delegator example readme ‒ #766.
  • With the stabilization of Rust 1.51 we ware able to remove the ink-unstable feature, making collections::SmallVec and lazy::LazyArray available by default ‒ #746.
  • To resolve confusion, we migrated all usages of #[test] in our examples to #[ink::test]#746.
    • The difference is that #[ink::test] spawns an emulated chain environment (an "off-chain" environment) and hence comes with a bit of overhead. It was not always clear to users when they require an off-chain environment, we decided to mitigate this confusion by using an emulated chain environment for all our example tests.
  • With the stabilization of Rust's min_const_generics we were able to replace the fixed size implementations of SpreadLayout and PackedLayout for Arrays. These traits are now implemented for all Arrays of size usize#754.
  • We were able to remove the pinned funty dependency ‒ #711.
  • The contract-transfer example has been improved for better UI support ‒ #789.
  • The contract-transfer example has been improved for better error handling ‒ #790.

Fixed

  • Catch illegal struct destructuring pattern in ink! message arguments ‒ #846.
  • Removed an erroneous Salt type in code generation for cross-contract calls ‒ #842.
  • Do not generate metadata if compiled as dependency ‒ #811.
  • Fix execution context parameters in DNS example tests ‒ #723.
  • Fixed the Greeter contract example from our doc comments ‒ #773.

Version 3.0-rc3 (2021-03-02)

This is the 3rd release candidate for ink! 3.0.

The list below shows the additions, changes and fixes that are visible to users of ink!.

Compatibility

ink! 3.0-rc3 is compatible with

  • The cargo-contract CLI tool version 0.9.1 or newer.
    • Install newest version using cargo install --force cargo-contract.
  • Substrate version 3.0 including the contracts-pallet version 3.0.

Added

  • Implemented chain extensions feature for ink!.
  • ink!'s official documentation portal: https://paritytech.github.io/ink-docs/
  • It is now possible to pass a salt argument to contract instantiations.
  • Implemented fuzz testing for the ink! codebase.

Changed

  • Migrate ink_storage::SmallVec and ink_storage::lazy::SmallLazyArray to use min_const_generics.
    • The min_const_generics feature is going to be stabilized in Rust 1.51. For now it was put behind the ink-unstable crate feature of the ink_storage crate.
  • Improve error reporting for conflicting ink! attributes.
  • Improve error reporting for invalid constructor or message selector. (use-ink#561)
  • Remove iter_mut for ink_storage::BinaryHeap data structure.
  • Add documented demonstration how to properly mock transferred_balance calls: use-ink#555
  • Add contract example which uses ext_transfer and ext_terminate: use-ink#554
  • Improve documentation of transfer and minimum_balance APIs: use-ink#540

Fixed

  • The Delegator example contract now compiles properly using the build-all.sh bash script.
  • Update crate dependencies:
    • scale-info 0.6
    • parity-scale-codec 2.0
    • rand 0.8
    • itertools 0.10
  • Remove unused tiny-keccak dependency from ink_primitives.
  • Changed the default BlockNumber type to u32. This is a fix since it now properly mirrors Substrate's default BlockNumber type.
  • Ensure topics are unique: use-ink#594
  • Several fixes for ink_storage data structures, including:
    • Drop implementation for Pack now works properly. (use-ink#600)
    • Drop implementation for Lazy now always properly clean up storage. (use-ink#597)
    • Nested Lazy now properly clears storage data. (use-ink#583)
    • Option fields now properly clean up nested storage data. (use-ink#570)

Version 3.0-rc2 (2020-10-22)

This is the 2nd release candidate for ink! 3.0.

On top of the changes introduced in the first release candidate for ink! 3.0 we introduced the following improvements, new features and bug fixes:

  • The ink_storage crate now comes with a new BinaryHeap data structure that has a very similar interface to the well known Rust standard library BinaryHeap. It features specific optimizations to reduce the storage reads and writes required for its operations.
  • Fixed a bug with ink_storage::Lazy that corrupted the storage of other storage data structures if it was unused in a contract execution.
  • The ink_storage::alloc::Box type now implements scale_info::TypeInfo which now allows it to be fully used inside other storage data structures such as ink_storage::collections::Vec. The missing of this implementation was considered a bug.
  • The LazyHashMap low-level storage abstraction is now re-exported from within the ink_storage::lazy module and docs are inlined.
  • Added note about the ink_core split into ink_env and ink_storage crates to the release notes of ink! 3.0-rc1.
  • The Cargo.toml documentation now properly links to the one deployed at docs.rs. On top of that crate level documentation for the ink_allocator crate has been added.
  • Add new ERC-20 example contract based on a trait implementation. Also modernized the old non-trait based ERC-20 example token contract.

Version 3.0-rc1 (2020-10-09)

Be prepared for the ink! 3.0 release notes because the whole version was basically a rewrite of all the major components that make up ink!. With our experience gained from previous releases of ink! we were able to detect weak spots of the design and provided ink! with more tools, more features and more efficiency as ever. Read more below …

Just. Be. Rust. 3.0

In the 3.0 update we further explored the space for ink! to just feel like it was plain Rust. With this in mind we changed the syntax slightly in order to better map from ink! to the generated Rust code. So what users see is mostly what will be generated by ink! later.

In this vein #[ink(storage)] and #[ink(event)] structs as well as #[ink(message)] and #[ink(constructor)] methods now need to be specified with public visibility (pub).

The #[ink(constructors)] syntax also changes and no longer uses a &mut self receiver but now follows the natural Rust constructors scheme. So it is no longer possible to shoot yourself in the foot by accidentally forgetting to initialize some important data structures.

Old ink! 2.0:

#[ink(constructor)]
fn new_erc20(&mut self, initial_supply: Balance) {
    let caller = self.env().caller();
    self.total_supply.set(initial_supply);
    self.balances.insert(caller, initial_supply);
}

New ink! 3.0:

#[ink(constructor)]
pub fn new_erc20(initial_supply: Balance) -> Self {
    let caller = self.env().caller();
    let mut balances = ink_storage::HashMap::new();
    balances.insert(caller, initial_supply);
    Self {
        total_supply: initial_supply,
        balances,
    }
}

Also ink! 3.0 no longer requires a mandatory version field in the header of the ink! module attribute.

Syntactically this is all it takes to port your current ink! smart contracts over to ink! 3.0 syntax.

Split of ink_core

The ink_core crate no longer exists. It has been split into the new ink_env and ink_storage crates.

Everything that was previously accessed through ink_core::env now lives in ink_env and everything that was previously accessed through ink_core::storage now lives in ink_storage. Both crates keep the responsibilities of their former originating ink_core modules.

New Storage Module

The storage module has been reworked entirely. Also it no longer lives in the ink_core crate but instead is defined as its own ink_storage crate.

In a sense it acts as the standard storage library for ink! smart contracts in that it provides all the necessary tools and data structures to organize and operate the contract's storage intuitively and efficiently.

Lazy

The most fundamental change in how you should think about data structures provided by the new ink_storage crate is that they are inherently lazy. We will explain what this means below! The ink_storage crate provides high-level and low-level lazy data structures. The difference between high-level and low-level lies in the distinction in how these data structures are aware of the elements that they operate on. For high-level data structures they are fully aware about the elements they contains, do all the clean-up by themselves so the user can concentrate on the business logic. For low-level data structures the responsibility about the elements lies in the hands of the contract author. Also they operate on cells (Option<T>) instead of entities of type T. But what does that mean exactly?

The new ink_storage::Lazy type is what corresponds the most to the old ink_core::storage::Value type. Both cache their entities and both act lazily on the storage. This means that a read or write operation is only performed when it really needs to in order to satisfy other inputs. Data types such as Rust primitives i32 or Rust's very own Vec or data structures can also be used to operate on the contract's storage, however, they will load their contents eagerly which is often not what you want.

An example follows with the below contract storage and a message that operates on either of the two fields.

#[ink(storage)]
pub struct TwoValues {
    offset: i32,
    a: i32,
    b: i32,
}

impl TwoValues {
    #[ink(message)]
    pub fn set(&mut self, which: bool, new_value: i32) {
        match which {
            true  => { self.a = self.offset + new_value; },
            false => { self.b = self.offset + new_value; },
        }
    }
}

Whenever we call TwoValues::set always both a and b are loaded despite the fact the we only operate on one of them at a time. This is very costly since storage accesses are in fact database look-ups. In order to prevent this eager loading of storage contents we can make use of ink_storage::Lazy or other lazy data structures defined in that crate:

#[ink(storage)]
pub struct TwoValues {
    offset: i32,
    a: ink_storage::Lazy<i32>,
    b: ink_storage::Lazy<i32>,
}

impl TwoValues {
    #[ink(message)]
    pub fn set(&mut self, which: bool, new_value: i32) {
        match which {
            true  => { self.a = offset + new_value; },
            false => { self.b = offset + new_value; },
        }
    }
}

Now a and b are only loaded when the contract really needs their values. Note that offset remained i32 since it is always needed and could spare the minor overhead of the ink_storage::Lazy wrapper.

HashMap

In the follow we explore the differences between the high-level ink_storage::collections::HashMap and the low-level ink_storage::lazy::LazyHashMap. Both provide very similar functionality in that they map some generic key to some storage entity.

However, their APIs look very different. Whereas the HashMap provides a rich and high-level API that is comparable to that of Rust's very own HashMap, the LazyHashMap provides only a fraction of the API and also operates on Option<T> values types instead of T directly. It is more similar Solidity mappings than to Rust's HashMap.

The fundamental difference of both data structures is that HashMap is aware of the keys that have been stored in it and thus can reconstruct exactly which elements and storage regions apply to it. This enables it to provide iteration and automated deletion as well as efficient way to defragment its underlying storage to free some storage space again. This goes very well in the vein of Substrate's storage rent model where contracts have to pay for the storage they are using.

Data Structure level of abstraction caching lazy element type container
T - yes no T primitive value
Lazy<T> high-level yes yes T single element container
LazyCell<T> low-level yes yes Option<T> single element, no container
Vec<T> high-level yes yes T Rust vector-like container
LazyIndexMap<T> low-level yes yes Option<T> similar to Solidity mapping
HashMap<K, V> high-level yes yes V (key type K) Rust map-like container
LazyHashMap<K, V> low-level yes yes Option<V> (key type K) similar to Solidity mapping

There are many more! For more information about the specifics please take a look into the ink_storage crate documentation.

Spread & Packed Modes

Storing or loading complex data structures to and from contract storage can be done in many different ways. You could store all information into a single storage cell or you could try to store all information into as many different cells as possible. Both strategies have pros and cons under different conditions.

For example it might be a very good idea to store all the information under the same cell if all the information is very compact. For example when we are dealing with a byte vector that is expected to never be larger than approx a thousand elements it would probably be more efficient if we store all those thousand bytes in the same cell and especially if we often access many of those (or all) in our contract messages.

On the other hand spreading information across as many cells as possible might be much more efficient if we are dealing with big data structures, a lot of information that is not compact, or when messages that operate on the data always only need a small fraction of the whole data. An example for this use case is if you have a vector of user accounts where each account stores potentially a lot of information, e.g. a 32-byte hash etc and where our messages only every operate on only a few of those at a time.

The ink_storage crate provides the user full control over the strategy or a mix of these two root strategies through some fundamental abstractions that we are briefly presenting to you.

Default: Spreading Mode

By default ink! spreads information to as many cells as possible. For example if you have the following #[ink(storage)] struct every field will live in its own single storage cell. Note that for c all 32 bytes will share the same cell!

#[ink(storage)]
pub struct Spreaded {
    a: i32,
    b: ink_storage::Lazy<i32>,
    c: [u8; 32],
}

Packing Storage

We can alter this behavior by using the ink_storage::Pack abstraction:

pub struct Spreaded {
    a: i32,
    b: ink_storage::Lazy<i32>,
    c: [u8; 32],
}

#[ink(storage)]
pub struct Packed {
    packed: ink_storage::Pack<Spreaded>,
}

Now all fields of Spreaded will share the same storage cell. This means whenever one of them is stored to or loaded from the contract storage, all of them are stored or loaded. A user has to choose wisely what mode of operation is more suitable for their contract.

These abstractions can be combined in various ways, yielding full control to the users. For example, in the following only a and b share a common storage cell while c lives in its own:

pub struct Spreaded {
    a: i32,
    b: ink_storage::Lazy<i32>,
}

#[ink(storage)]
pub struct Packed {
    packed: ink_storage::Pack<Spreaded>,
    c: [u8; 32],
}

Spreading Array Cells

If we prefer to store all bytes of c into their own storage cell we can make use of the SmallVec data structure. The SmallVec is a high-level data structure that allows to efficiently organize a fixed number of elements similar to a Rust array. However, unlike a Rust array it acts lazily upon the storage and spreads its elements into different cells.

use typenum::U32;

pub struct Spreaded {
    a: i32,
    b: ink_storage::Lazy<i32>,
}

#[ink(storage)]
pub struct Packed {
    packed: ink_storage::Pack<Spreaded>,
    c: SmallVec<u8, U32>,
}

Opting-out of Storage

If you are in need of storing some temporary information across method and message boundaries ink! will have your back with the ink_storage::Memory abstraction. It allows you to simply opt-out of using the storage for the wrapped entity at all and thus is very similar to Solidity's very own memory annotation.

An example below:

#[ink(storage)]
pub struct OptedOut {
    a: i32,
    b: ink_storage::Lazy<i32>,
    c: ink_storage::Memory<i32>,
}

The the above example a and b are normal storage entities, however, c on the other hand side will never load from or store to contract storage and will always be reset to the default value of its i32 type for every contract call. It can be accessed from all ink! messages or methods via self.c but will never manipulate the contract storage and thus acts wonderfully as some shared local information.

Dynamic Storage Allocator

In the previous section we have seen how the default mode of operation is to spread information and how we can opt-in to packing information into single cells via ink_storage::Packed.

However, what if we wanted to store a vector of a vector of i32 for example? Naturally a user would try to construct this as follows:

use ink_storage::Vec as StorageVec;

#[ink(storage)]
pub struct Matrix {
    values: StorageVec<StorageVec<i32>>,
}

However, this will fail compilation with an error indicating that StorageVec<T> requires for its T to be packed (T: PackedLayout) which StorageVec<T> itself does not since it always stores all of its elements into different cells. The same applies to many other storage data structures provided by ink_storage and is a trade-off the ink! team decided for the case of efficiency of the overall system. Instead what a user can do in order to get their vector-of-vector to be working is to make use of ink!'s dynamic storage allocator capabilities.

For this the contract author has to first enable the feature via:

use ink_lang as ink;

#[ink::contract(dynamic_storage_allocator = true)]
mod matrix {
    // contract code ...
}

And then we can define our Matrix #[ink(storage)] as follows:

use ink_storage::{
    Vec as StorageVec,
    Box as StorageBox,
};

#[ink(storage)]
pub struct Matrix {
    values: StorageVec<StorageBox<StorageVec<i32>>>,
}

With ink_storage::Box<T> we can use a T: SpreadLayout as if it was T: PackedLayout since the ink_storage::Box<T> itself suffices the requirements and can be put into a single contract storage cell. The whole concept works quite similar to how Rust's Box works: by an indirection - contract authors are therefore advised to make use of dynamic storage allocator capabilities only if other ways of dealing with ones problems are not applicable.

Custom Data Sturctures

While the ink_storage crate provides tons of useful utilities and data structures to organize and manipulate the contract's storage contract authors are not limited by its capabilities. By implementing the core SpreadLayout and PackedLayout traits users are able to define their very own custom storage data structures with their own set of requirement and features that work along the ink_storage data structures as long as they fulfill the mere requirements stated by those two traits.

In the future we plan on providing some more ink! workshops and tutorials guiding the approach to design and implement a custom storage data structure.

In Summary

The new ink_storage crate provides everything you need to operate on your contract's storage. There are low-level and high-level data structures depending on your need of control. All provided data structures operate lazily on the contract's storage and cache their reads and writes for a more gas efficient storage access. Users should prefer high-level data structures found in the collections module over the low-level data structures found in the lazy module. For a list of all the new storage data structure visit ink_storage's documentation.

ink! Attributes

For ink! 3.0 we have added some more useful ink! specific attributes to the table. All of these ink! attributes are available to specify inside an ink! module. An ink! module is the module that is flagged by #[ink::contract] containing all the ink! definitions:

use ink_lang as ink;

#[ink::contract]
mod erc20 {
    #[ink(storage)]
    pub struct Erc20 { ... }

    impl Erc20 {
        #[ink(constructor)]
        pub fn new(initial_supply: Balance) -> Self { .. }

        #[ink(constructor)]
        pub fn total_supply(&self) -> Balance { .. }

        // etc. ...
    }
}

We won't be going into the details for any of those but will briefly present the entire set of ink! specific attributes below:

Attribute Where Applicable Description
#[ink(storage)] On struct definitions. Defines the ink! storage struct. There can only be one ink! storage definition per contract.
#[ink(event)] On struct definitions. Defines an ink! event. A contract can define multiple such ink! events.
#[ink(anonymous)] new Applicable to ink! events. Tells the ink! codegen to treat the ink! event as anonymous which omits the event signature as topic upon emitting. Very similar to anonymous events in Solidity.
#[ink(topic)] Applicate on ink! event field. Tells the ink! codegen to provide a topic hash for the given field. Every ink! event can only have a limited number of such topic field. Similar semantics as to indexed event arguments in Solidity.
#[ink(message)] Applicable to methods. Flags a method for the ink! storage struct as message making it available to the API for calling the contract.
#[ink(constructor)] Applicable to method. Flags a method for the ink! storage struct as constructor making it available to the API for instantiating the contract.
#[ink(payable)] new Applicable to ink! messages. Allows receiving value as part of the call of the ink! message. ink! constructors are implicitly payable.
#[ink(selector = "..")] new Applicable to ink! messages and ink! constructors. Specifies a concrete dispatch selector for the flagged entity. This allows a contract author to precisely control the selectors of their APIs making it possible to rename their API without breakage.
#[ink(namespace = "..")] new Applicable to ink! trait implementation blocks. Changes the resulting selectors of all the ink! messages and ink! constructors within the trait implementation. Allows to disambiguate between trait implementations with overlapping message or constructor names. Use only with great care and consideration!
#[ink(impl)] new Applicable to ink! implementation blocks. Tells the ink! codegen that some implementation block shall be granted access to ink! internals even without it containing any ink! messages or ink! constructors.

Merging of ink! Attributes

It is possible to merge attributes that share a common flagged entity. The example below demonstrates this for a payable message with a custom selector.

#[ink(message)]
#[ink(payable)]
#[ink(selector = "0xCAFEBABE")]
pub fn transfer(&mut self, from: AccountId, to: AccountId, value: Balance) -> Result<(), Error> {
    // actual implementation
}

We can also write the above ink! message definition in the following way:

#[ink(message, payable, selector = "0xCAFEBABE")]
pub fn transfer(&mut self, from: AccountId, to: AccountId, value: Balance) -> Result<(), Error> {
    // actual implementation
}

Trait Support

One of the most anticipated features of ink! 3.0 is its Rust trait support. Through the new #[ink::trait_definition] procedural macro it is now possible to define your very own trait definitions that are then implementable by ink! smart contracts.

This allows to define shared smart contract interfaces to different concrete implementations. Note that this ink! trait definition can be defined anywhere, even in another crate!

Example

Defined in the base_erc20.rs module.

use ink_lang as ink;

#[ink::trait_definition]
pub trait BaseErc20 {
    /// Creates a new ERC-20 contract and initializes it with the initial supply for the instantiator.
    #[ink(constructor)]
    fn new(initial_supply: Balance) -> Self;

    /// Returns the total supply.
    #[ink(message)]
    fn total_supply(&self) -> Balance;

    /// Transfers `amount` from caller to `to`.
    #[ink(message, payable)]
    fn transfer(&mut self, to: AccountId, amount: Balance);
}

An ink! smart contract definition can then implement this trait definition as follows:

use ink_lang as ink;

#[ink::contract]
mod erc20 {
    use base_erc20::BaseErc20;

    #[ink(storage)]
    pub struct Erc20 {
        total_supply: Balance,
        // more fields ...
    }

    impl BaseErc20 for Erc20 {
        #[ink(constructor)]
        fn new(initial_supply: Balance) -> Self {
            // implementation ...
        }

        #[ink(message)]
        fn total_supply(&self) -> Balance {
            // implementation ...
        }

        #[ink(message, payable)]
        fn transfer(&mut self, to: AccountId, amount: Balance) {
            // implementation ...
        }
    }
}

Calling the above Erc20 explicitely through its trait implementation can be done just as if it was normal Rust code:

// --- Instantiating the ERC-20 contract:
//
let mut erc20 = <Erc20 as BaseErc20>::new(1000);
// --- Is just the same as:
use base_erc20::BaseErc20;
let mut erc20 = Erc20::new(1000);

// --- Retrieving the total supply:
//
assert_eq!(<Erc20 as BaseErc20>::total_supply(&erc20), 1000);
// --- Is just the same as:
use base_erc20::BaseErc20;
assert_eq!(erc20.total_supply(), 1000);

There are still many limitations to ink! trait definitions and trait implementations. For example it is not possible to define associated constants or types or have default implemented methods. These limitations exist because of technical intricacies, however, please expect that many of those will be tackled in future ink! releases.

Version 2.1 (2020-03-25)

  • Add built-in support for cryptographic hashes:
    • Blake2 with 128-bit and 256-bit
    • Sha2 with 256-bit
    • Keccak with 256-bit
  • Add ink_core::hash module for high-level API to the new built-in hashes.
  • Update runtime-storage example ink! smart contract to demonstrate the new built-in hashes.

Version 2.0 (2019-12-03)

The ink! version 2.0 syntax has one major philosophy:

Just. Be. Rust.

To accomplish this, we take advantage of all the standard Rust types and structures and use attribute macros to tag these standard structures to be different parts of the ink! language.

Anything that is not tagged with an #[ink(...)] attribute tag is just standard Rust, and can be used in and out of your contract just like standard Rust could be used!

Every valid ink! contract is required to have at least one #[ink(constructor)], at least one #[ink(message)] and exactly one #[ink(storage)] attribute.

Follow the instructions below to understand how to migrate your ink! 1.0 contracts to this new ink! 2.0 syntax.

Update the ink! CLI

Install the latest ink! CLI using the following command:

cargo install --git https://github.com/paritytech/cargo-contract cargo-contract --force

There is a new contract metadata format you need to use. You can generate the metadata using:

cargo contract generate-metadata

This will generate a file metadata.json you should upload when deploying or interacting with a contract.

Declaring a Contract

The fundamental change with the new ink! syntax is how we declare a new contract.

We used to wrap the whole ink! contract into a contract! macro. At that point, all syntax within the macro could be custom, and in our first iteration of the language, we used that in ways that made our code not really Rust anymore.

Now we wrap the whole contract in a standard Rust module, and include an attribute tag to identify this object as part of the ink! language. This means that all of our code from this point forward will be valid Rust!

Before After
contract! {
    ...
}
use ink_lang as ink;

#[ink::contract(version = "0.1.0")]
mod erc20 {
    ...
}

Note: we now require a mandatory ink! version in the header. You're welcome.

See the ERC20 example.

ink! Contract Tag

The ink! contract tag can be extended to provide other configuration information about your contract.

Defining Custom Types

We used to define types using a special #![env = DefaultSrmlTypes] tag.

Now we simply include the type definition in the #[ink::contract(...)] tag:

#[ink::contract(version = "0.1.0", env = MyCustomTypes)]

By default, we use DefaultSrmlTypes, so you don't need to define anything unless you plan to use custom types.

Dynamic Allocation

It is possible to enable the dynamic environment that allows for dynamic allocations by specifying dynamic_allocations = true in the parameters of the ink! header. This is disabled by default.

#[ink::contract(version = "0.1.0", dynamic_allocations = true)]

Note: The dynamic environment is still under research and not yet stable.

Declaring Storage

We define storage items just the same as before, but now we need to add the #[ink(storage)] attribute tag.

Before After
struct Erc20 {
    total_supply: storage::Value<Balance>,
    balances: storage::HashMap<AccountId, Balance>,
    allowances: storage::HashMap<(AccountId, AccountId), Balance>,
}
#[ink(storage)]
struct Erc20 {
    total_supply: storage::Value<Balance>,
    balances: storage::HashMap<AccountId, Balance>,
    allowances: storage::HashMap<(AccountId, AccountId), Balance>,
}

See the ERC20 example.

Declaring Events

To update your events, you need to:

  1. Change the old event keyword to a standard Rust struct.
  2. Add the #[ink(event)] attribute tag to your struct.

If you were previously indexing the items in your event with #[indexed]:

  1. Add the #[ink(topic)] attribute tag to each item in your event.
Before After
event Transfer {
    from: Option<AccountId>,
    to: Option<AccountId>,
    #[indexed]
    value: Balance,
}
#[ink(event)]
struct Transfer {
    from: Option<AccountId>,
    to: Option<AccountId>,
    #[ink(topic)]
    value: Balance,
}

See the ERC20 example.

Environment Handler

EnvHandler is no longer exposed to the user and instead the environment is now always accessed via self.env().

Before After

Getting the caller:

let caller = env.caller();

Emitting an event:

env.emit(...)

Getting the caller:

let caller = self.env().caller();

Emitting an event:

self.env().emit_event(...)

Note: The name of the function used to emit an event was updated to emit_event.

Message Functions

We used to use pub(external) to tag functions that could be called by the outside world.

We now simply add the attribute #[ink(message)].

Before After
pub(external) fn total_supply(&self) -> Balance {
    *self.total_supply
}
#[ink(message)]
fn total_supply(&self) -> Balance {
    *self.total_supply
}

See the ERC20 example.

Defining a Constructor

We used to define our constructor by implementing the Deploy trait and defining the deploy function.

But now our constructor function is in the same place as the rest of our contract functions, within the general implementation of the storage struct.

We tag these functions with the #[ink(constructor)] attribute. We can create multiple different constructors by simply creating more functions with the same tag. You can name a constructor function whatever you want (except starting with __ink which is reserved for all functions).

Before After
impl Deploy for Erc20 {
    fn deploy(&mut self, init_supply: Balance) {
        let caller = env.caller();
        self.total_supply.set(init_value);
        self.balances.insert(caller, init_supply);
        env.emit(Transfer {
            from: None,
            to: Some(env.caller()),
            value: init_value
        });
    }
}
impl Erc20 {
    #[ink(constructor)]
    fn new(&mut self, initial_supply: Balance) {
        let caller = self.env().caller();
        self.total_supply.set(initial_supply);
        self.balances.insert(caller, initial_supply);
        self.env().emit_event(Transferred {
            from: None,
            to: Some(caller),
            amount: initial_supply,
        });
    }
}

See the ERC20 example.

Cross Contract Calls

It is now possible to call ink! messages and ink! constructors. So ink! constructors allow delegation and ink! messages can easily call other ink! messages.

Given another ink! contract like mod Adder { ... }, we can call any of its functions:

use adder::Adder;
//--snip--
#[ink(storage)]
struct Delegator {
    adder: storage::Value<Adder>,
}
//--snip--
let result = self.adder.inc(by);

See the delegator example.

Factory Contracts

Creation of other contracts from a factory contract works pretty much the same way it did in the old ink! language.

However, users are now required to specify the code_hash separately rather than in the constructor:

.using_code(code_hash)

Also, they need to specify the used ink! environment (most likely self.env()):

create_using(self.env())
Before After
let accumulator = Accumulator::new(accumulator_code_hash, init_value)
    .value(total_balance / 4)
    .create()
    .expect("failed at instantiating the accumulator contract");
let accumulator = Accumulator::new(init_value)
    .value(total_balance / 4)
    .gas_limit(12345)
    .using_code(accumulator_code_hash)
    .create_using(self.env())
    .expect("failed at instantiating the `Accumulator` contract");

See the delegator example.

Contract Tests

Testing contracts off-chain is done by cargo test and users can simply use the standard routines of creating unit test modules within the ink! project:

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn my_test() { ... }
}

Test instances of contracts can be created with something like:

let contract = MyContract::my_constructor(a, b);

Messages can simply be called on the returned instance as if MyContract::my_constructor returns a Self instance.

See the flipper example.

The off-chain test environment has lost a bit of power compared to the old ink! language.

It is not currently possible to query and set special test data about the environment (such as the caller of a function or amount of value sent), but these will be added back in the near future.

ink!-less Implementations

It is also possible to annotate an entire impl blocks with:

#[ink(impl)]
impl Contract {
    fn internal_function(&self) {
        self.env().emit_event(EventName);
    }
}.

This is useful if the impl block itself does not contain any ink! constructors or messages, but you still need to access some of the "magic" provided by ink!. In the example above, you would not have access to emit_event without #[ink(impl)].