-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
483 lines (377 loc) · 21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import os
import sys, gzip
import argparse
import time
import random
import logging
import json
import bidict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torch.autograd import Variable
from collections import Counter
import numpy as np
from top_models import *
import preprocess
import postprocess, model_use
import model_args
from eval.eval_access import eval_access
from pcfg_models import SimpleCompPCFGCharNoDistinction
def random_seed(seed_value, use_cuda):
np.random.seed(seed_value) # cpu vars
torch.manual_seed(seed_value) # cpu vars
random.seed(seed_value) # Python
if use_cuda and torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # gpu vars
def train():
opt = model_args.parse_args(sys.argv)
# set seed before anything else.
if opt.seed < 0: # random seed if seed is set to negative values
opt.seed = int(int(time.time()) * random.random())
random_seed(opt.seed, use_cuda=opt.device=='cuda')
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logfile_fh = gzip.open(os.path.join(opt.model_path, opt.logfile), 'wt')
writer = SummaryWriter(os.path.join(opt.model_path, 'tensorboard'), flush_secs=10)
filehandler = logging.StreamHandler(logfile_fh)
streamhandler = logging.StreamHandler(sys.stdout)
handler_list = [filehandler, streamhandler]
logging.basicConfig(level='INFO', format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p', handlers=handler_list)
# Dump configurations
logging.info(opt)
writer.add_text('args', str(opt))
assert (opt.device == 'cuda' and torch.cuda.is_available()) or opt.device == 'cpu'
train_data = preprocess.read_corpus(opt.train_path, opt.korean_phonetics)
logging.info('training instance: {}, training tokens: {}.'.format(len(train_data),
sum([len(s) - 1 for s in train_data])))
with open(opt.train_gold_path) as tfh:
train_tree_list = [x.strip() for x in tfh]
train_data, valid_data, train_tree_list, valid_tree_list = preprocess.divide(train_data, opt.valid_size, train_tree_list, include_valid_in_train=False,
all_train_as_valid=True) # INCLUDE VALID IN TRAIN TO REDUCE TIME
logging.info('training instance: {}, training tokens after division: {}.'.format(len(train_data), sum([len(s) - 1 for s in train_data])))
logging.info('valid instance: {}, valid tokens: {}.'.format(len(valid_data), sum([len(s) - 1 for s in valid_data])))
if opt.augment_path is not None:
aug_data = preprocess.read_corpus(opt.augment_path, opt.korean_phonetics)
training_data_target = opt.augment_target
augmenting_data_number = training_data_target - len(train_data)
if augmenting_data_number > 0:
augmenting_data = aug_data[:augmenting_data_number]
train_data = train_data + augmenting_data
logging.info('augmenting data instance: {}, total data instance {}.'.format(len(augmenting_data), training_data_target))
else:
train_data = train_data[:training_data_target]
valid_data = valid_data[:training_data_target]
valid_tree_list = valid_tree_list[:training_data_target]
logging.info('reducing data instances to: {} from total data instance {}.'.format(training_data_target, len(train_data)))
word_lexicon = bidict.bidict()
# Maintain the vocabulary. vocabulary is used in either WordEmbeddingInput or softmax classification
logging.warning('enforcing minimum count of 1')
opt.min_count = 1
vocab = preprocess.get_truncated_vocab(train_data, opt.min_count, opt.max_vocab_size)
# Ensure index of '<oov>' is 0
special_words = [preprocess.OOV, preprocess.BOS, preprocess.EOS, preprocess.PAD, preprocess.LRB, preprocess.RRB]
special_chars = [preprocess.BOS, preprocess.EOS, preprocess.OOV, preprocess.PAD, preprocess.BOW, preprocess.EOW]
for special_word in special_words:
if special_word not in word_lexicon:
word_lexicon[special_word] = len(word_lexicon)
for word, _ in vocab:
if word not in word_lexicon:
word_lexicon[word] = len(word_lexicon)
logging.info('Vocabulary size: {0}'.format(len(word_lexicon)) + '; Max length: {}'.format(max([len(x) for x in word_lexicon])))
# Character Lexicon
char_lexicon = bidict.bidict()
char_grams_lexicon = bidict.bidict()
for word in special_words:
char_grams_lexicon[word] = len(char_grams_lexicon)
if opt.subgram_word:
for word in word_lexicon:
if word not in char_grams_lexicon:
char_grams_lexicon['word ' + word] = len(char_grams_lexicon)
# add word length feature
for i in range(1, 1+max([len(x) for x in word_lexicon])):
char_grams_lexicon['word length '+str(i)] = len(char_grams_lexicon)
word_indexed_char_grams = {}
for sentence in train_data:
for word in sentence:
if word in word_indexed_char_grams or word in special_words or word not in word_lexicon:
continue
else:
word_indexed_char_grams[word] = set()
word_indexed_char_grams[word].add(char_grams_lexicon['word length '+str(len(word))])
if opt.subgram_word:
word_indexed_char_grams[word].add(char_grams_lexicon['word ' + word])
for ch in word:
if ch not in char_lexicon:
char_lexicon[ch] = len(char_lexicon)
characters = [preprocess.BOW, preprocess.BOW] + list(word) + [preprocess.EOW, preprocess.EOW]
if opt.subgram_stem and len(characters) - 4 >= 7:
allfixes = [' '.join(characters[1:-3]), ' '.join(characters[1:-4]), ' '.join(characters[1:-5]),
' '.join(characters[3:-1]), ' '.join(characters[4:-1]), ' '.join(characters[5:-1])]
for fix in allfixes:
if fix not in char_grams_lexicon:
char_grams_lexicon[fix] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[fix])
for index in range(len(characters)-2):
curgram = ' '.join(characters[index:index + 3])
if curgram not in char_grams_lexicon:
char_grams_lexicon[curgram] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[curgram])
for index in range(1, len(characters)-2):
curgram = ' '.join(characters[index:index + 2])
if curgram not in char_grams_lexicon:
char_grams_lexicon[curgram] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[curgram])
largest_char_features = max([len(y) for y in word_indexed_char_grams.values()])
features = []
offsets = []
for word_index in range(len(word_lexicon)):
word = word_lexicon.inv[word_index]
offsets.append(len(features))
if word not in word_indexed_char_grams:
features.append(char_grams_lexicon[word])
else:
for val_index, val in enumerate(word_indexed_char_grams[word]):
features.append(val)
all_words_char_features = (torch.LongTensor(features), torch.LongTensor(offsets))
torch.save(all_words_char_features, os.path.join(opt.model_path, 'words_char_features.pth'))
for special_char in special_chars:
if special_char not in char_lexicon:
char_lexicon[special_char] = len(char_lexicon)
logging.info('Char embedding size: {0}'.format(len(char_lexicon)))
logging.info('Char Grams size: {0}'.format(len(char_grams_lexicon)))
train_list = []
# training batch size for the pre training is 8 times larger than in eval
train = preprocess.create_batches(train_data, opt.batch_size, word_lexicon, char_lexicon, opt=opt)
logging.info('Evaluate every {0} epochs.'.format(opt.eval_steps))
if valid_data is not None:
valid = preprocess.create_batches(valid_data, opt.batch_size, word_lexicon, char_lexicon, eval=True, opt=opt)
else:
valid = None
logging.info('vocab size: {0}'.format(len(word_lexicon)))
if opt.model_type not in {"word", "char"}:
raise ValueError('not recognized model type! {} '.format(opt.model_type))
else:
pcfg_parser = SimpleCompPCFGCharNoDistinction(nt_states=opt.num_nonterminal, pret_states=opt.num_preterminal, num_chars=len(char_lexicon),
device=opt.device, eval_device=opt.eval_device, num_words=len(word_lexicon), model_type=opt.model_type,
state_dim=opt.state_dim, char_grams_lexicon=char_grams_lexicon,
all_words_char_features=all_words_char_features, rnn_hidden_dim=opt.rnn_hidden_dim)
model = CharPCFG(pcfg_parser, writer=writer)
logging.info(str(model))
num_grammar_params = 0
for param in model.parameters():
num_grammar_params += param.numel()
logging.info("Top PCFG parser has {} parameters".format(num_grammar_params))
model = model.to(opt.device)
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
with open(os.path.join(opt.model_path, 'char.dic'), 'w', encoding='utf-8') as fpo:
for ch, i in char_lexicon.items():
print('{0}\t{1}'.format(ch, i), file=fpo)
with open(os.path.join(opt.model_path, 'word.dic'), 'w', encoding='utf-8') as fpo:
for w, i in word_lexicon.items():
print('{0}\t{1}'.format(w, i), file=fpo)
with open(os.path.join(opt.model_path, 'subgrams.dic'), 'w', encoding='utf-8') as fpo:
for w, i in char_grams_lexicon.items():
print('{0}\t{1}'.format(w, i), file=fpo)
opt_save_path = os.path.join(opt.model_path, 'opt.pth')
torch.save(opt, opt_save_path)
best_eval_likelihood = -1e+8
patient = 0
if opt.checkpoint != "":
checkpoint = torch.load(opt.checkpoint)
model.load_state_dict(checkpoint)
for epoch in range(opt.start_epoch, opt.max_epoch):
if train_list and epoch >= len(train_list):
break # stop if doing the childes marker thing
elif train_list and epoch < len(train_list):
train = train_list[epoch]
else:
pass
optimizer = model_use.train_model(epoch, opt, model, optimizer, train)
if ((epoch - opt.eval_start_epoch) % opt.eval_steps == 0 or epoch + 1 == opt.max_epoch) and epoch >= opt.eval_start_epoch:
logging.info('EVALING.')
if opt.eval_parsing:
# evaluate on CPU
model.to(opt.eval_device)
total_eval_likelihoods, trees = model_use.parse_dataset(model, valid, epoch)
total_eval_likelihoods = total_eval_likelihoods
tree_fn, valid_pred_trees = postprocess.print_trees(trees, valid_data, epoch, opt)
eval_access(valid_pred_trees, valid_tree_list, model.writer, epoch)
# back to GPU for training
model.to(opt.device)
else:
total_eval_likelihoods = model_use.likelihood_dataset(model, valid, epoch) * (-1)
if total_eval_likelihoods > best_eval_likelihood:
logging.info('Better model found based on likelihood: {}! vs {}'.format(total_eval_likelihoods, best_eval_likelihood))
best_eval_likelihood = total_eval_likelihoods
patient = 0
model_save_path = os.path.join(opt.model_path, 'model.pth')
torch.save(model.state_dict(), model_save_path)
else:
patient += 1
if patient >= opt.eval_patient:
break
model.writer.close()
def test():
opt = model_args.parse_args(sys.argv)
# set seed before anything else.
if opt.seed < 0: # random seed if seed is set to negative values
opt.seed = int(int(time.time()) * random.random())
random_seed(opt.seed, use_cuda=opt.device=='cuda')
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logfile_fh = gzip.open(os.path.join(opt.model_path, opt.logfile), 'wt')
writer = SummaryWriter(os.path.join(opt.model_path, 'tensorboard'), flush_secs=10)
filehandler = logging.StreamHandler(logfile_fh)
streamhandler = logging.StreamHandler(sys.stdout)
handler_list = [filehandler, streamhandler]
logging.basicConfig(level='INFO', format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p', handlers=handler_list)
# Dump configurations
logging.info(opt)
writer.add_text('args', str(opt))
assert (opt.device == 'cuda' and torch.cuda.is_available()) or opt.device == 'cpu'
train_data = preprocess.read_corpus(opt.train_path, opt.korean_phonetics)
logging.info('training instance: {}, training tokens: {}.'.format(len(train_data),
sum([len(s) - 1 for s in train_data])))
with open(opt.train_gold_path) as tfh:
train_tree_list = [x.strip() for x in tfh]
train_data, valid_data, train_tree_list, valid_tree_list = preprocess.divide(train_data, opt.valid_size, train_tree_list, include_valid_in_train=False,
all_train_as_valid=True) # INCLUDE VALID IN TRAIN TO REDUCE TIME
logging.info('training instance: {}, training tokens after division: {}.'.format(len(train_data), sum([len(s) - 1 for s in train_data])))
logging.info('valid instance: {}, valid tokens: {}.'.format(len(valid_data), sum([len(s) - 1 for s in valid_data])))
word_lexicon = bidict.bidict()
# Maintain the vocabulary. vocabulary is used in either WordEmbeddingInput or softmax classification
logging.warning('enforcing minimum count of 1')
opt.min_count = 1
vocab = preprocess.get_truncated_vocab(train_data, opt.min_count, opt.max_vocab_size)
# Ensure index of '<oov>' is 0
special_words = [preprocess.OOV, preprocess.BOS, preprocess.EOS, preprocess.PAD, preprocess.LRB, preprocess.RRB]
special_chars = [preprocess.BOS, preprocess.EOS, preprocess.OOV, preprocess.PAD, preprocess.BOW, preprocess.EOW]
for special_word in special_words:
if special_word not in word_lexicon:
word_lexicon[special_word] = len(word_lexicon)
for word, _ in vocab:
if word not in word_lexicon:
word_lexicon[word] = len(word_lexicon)
logging.info('Vocabulary size: {0}'.format(len(word_lexicon)) + '; Max length: {}'.format(max([len(x) for x in word_lexicon])))
# Character Lexicon
char_lexicon = bidict.bidict()
char_grams_lexicon = bidict.bidict()
for word in special_words:
char_grams_lexicon[word] = len(char_grams_lexicon)
if opt.subgram_word:
for word in word_lexicon:
if word not in char_grams_lexicon:
char_grams_lexicon['word ' + word] = len(char_grams_lexicon)
# add word length feature
for i in range(1, 1+max([len(x) for x in word_lexicon])):
char_grams_lexicon['word length '+str(i)] = len(char_grams_lexicon)
word_indexed_char_grams = {}
for sentence in train_data:
for word in sentence:
if word in word_indexed_char_grams or word in special_words:
continue
else:
word_indexed_char_grams[word] = set()
word_indexed_char_grams[word].add(char_grams_lexicon['word length '+str(len(word))])
if opt.subgram_word:
word_indexed_char_grams[word].add(char_grams_lexicon['word ' + word])
for ch in word:
if ch not in char_lexicon:
char_lexicon[ch] = len(char_lexicon)
characters = [preprocess.BOW, preprocess.BOW] + list(word) + [preprocess.EOW, preprocess.EOW]
if opt.subgram_stem and len(characters) - 4 >= 7:
allfixes = [' '.join(characters[1:-3]), ' '.join(characters[1:-4]), ' '.join(characters[1:-5]),
' '.join(characters[3:-1]), ' '.join(characters[4:-1]), ' '.join(characters[5:-1])]
for fix in allfixes:
if fix not in char_grams_lexicon:
char_grams_lexicon[fix] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[fix])
for index in range(len(characters)-2):
curgram = ' '.join(characters[index:index + 3])
if curgram not in char_grams_lexicon:
char_grams_lexicon[curgram] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[curgram])
for index in range(1, len(characters)-2):
curgram = ' '.join(characters[index:index + 2])
if curgram not in char_grams_lexicon:
char_grams_lexicon[curgram] = len(char_grams_lexicon)
word_indexed_char_grams[word].add(char_grams_lexicon[curgram])
largest_char_features = max([len(y) for y in word_indexed_char_grams.values()])
features = []
offsets = []
for word_index in range(len(word_lexicon)):
word = word_lexicon.inv[word_index]
offsets.append(len(features))
if word not in word_indexed_char_grams:
features.append(char_grams_lexicon[word])
else:
for val_index, val in enumerate(word_indexed_char_grams[word]):
features.append(val)
all_words_char_features = (torch.LongTensor(features), torch.LongTensor(offsets))
torch.save(all_words_char_features, os.path.join(opt.model_path, 'words_char_features.pth'))
for special_char in special_chars:
if special_char not in char_lexicon:
char_lexicon[special_char] = len(char_lexicon)
logging.info('Char embedding size: {0}'.format(len(char_lexicon)))
logging.info('Char Grams size: {0}'.format(len(char_grams_lexicon)))
logging.info('Evaluate every {0} epochs.'.format(opt.eval_steps))
if valid_data is not None:
valid = preprocess.create_batches(valid_data, opt.batch_size, word_lexicon, char_lexicon, eval=True, opt=opt)
else:
valid = None
logging.info('vocab size: {0}'.format(len(word_lexicon)))
if opt.model_type not in {"word", "char"}:
raise ValueError('not recognized model type! {} '.format(opt.model_type))
else:
pcfg_parser = SimpleCompPCFGCharNoDistinction(nt_states=opt.num_nonterminal, pret_states=opt.num_preterminal, num_chars=len(char_lexicon),
device=opt.device, eval_device=opt.eval_device, num_words=len(word_lexicon), model_type=opt.model_type,
state_dim=opt.state_dim, char_grams_lexicon=char_grams_lexicon,
all_words_char_features=all_words_char_features, rnn_hidden_dim=opt.rnn_hidden_dim)
model = CharPCFG(pcfg_parser, writer=writer)
logging.info(str(model))
num_grammar_params = 0
for param in model.parameters():
num_grammar_params += param.numel()
logging.info("Top PCFG parser has {} parameters".format(num_grammar_params))
model = model.to(opt.device)
with open(os.path.join(opt.model_path, 'char.dic'), 'w', encoding='utf-8') as fpo:
for ch, i in char_lexicon.items():
print('{0}\t{1}'.format(ch, i), file=fpo)
with open(os.path.join(opt.model_path, 'word.dic'), 'w', encoding='utf-8') as fpo:
for w, i in word_lexicon.items():
print('{0}\t{1}'.format(w, i), file=fpo)
with open(os.path.join(opt.model_path, 'subgrams.dic'), 'w', encoding='utf-8') as fpo:
for w, i in char_grams_lexicon.items():
print('{0}\t{1}'.format(w, i), file=fpo)
opt_save_path = os.path.join(opt.model_path, 'opt.pth')
torch.save(opt, opt_save_path)
if opt.checkpoint != "":
checkpoint = torch.load(opt.checkpoint)
model.load_state_dict(checkpoint)
logging.info('Model loaded from {}.'.format(opt.checkpoint))
logging.info('EVALING.')
if opt.eval_parsing:
# evaluate on CPU
if opt.device != opt.eval_device:
model.to(opt.eval_device)
_, trees = model_use.parse_dataset(model, valid, 0)
tree_fn, valid_pred_trees = postprocess.print_trees(trees, valid_data, 0, opt)
eval_access(valid_pred_trees, valid_tree_list, model.writer, 0)
# back to GPU for training
if opt.device != opt.eval_device:
model.to(opt.device)
model.writer.close()
if __name__ == "__main__":
if len(sys.argv) > 1 and sys.argv[1] == 'train':
train()
logging.shutdown()
elif len(sys.argv) > 1 and sys.argv[1] == 'test':
test()
else:
print('Usage: {0} [train|test] [options]'.format(sys.argv[0]), file=sys.stderr)