-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutil.py
177 lines (140 loc) · 6.36 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import math
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def value(energy, noise, x, gen):
logp_x = energy(x) # logp(x)
logq_x = noise.log_prob(x).unsqueeze(1) # logq(x)
logp_gen = energy(gen) # logp(x̃)
logq_gen = noise.log_prob(gen).unsqueeze(1) # logq(x̃)
value_data = logp_x - torch.logsumexp(torch.cat([logp_x, logq_x], dim=1), dim=1, keepdim=True) # log[p(x)/(p(x) + q(x))]
value_gen = logq_gen - torch.logsumexp(torch.cat([logp_gen, logq_gen], dim=1), dim=1, keepdim=True) # log[q(x̃)/(p(x̃) + q(x̃))]
v = value_data.mean() + value_gen.mean()
r_x = torch.sigmoid(logp_x - logq_x)
r_gen = torch.sigmoid(logq_gen - logp_gen)
acc = ((r_x > 1/2).sum() + (r_gen > 1/2).sum()).cpu().numpy() / (len(x) + len(gen))
return -v, acc
#-------------------------------------------
# DATA
#-------------------------------------------
def get_data(args):
dataset = sample_2d_data(dataset=args.dataset, n_samples=args.samples)
dataloader = DataLoader(dataset, batch_size=args.batch, shuffle=True)
return dataset, dataloader
def sample_2d_data(dataset='8gaussians', n_samples=50000):
z = torch.randn(n_samples, 2)
if dataset == '8gaussians':
scale = 4
sq2 = 1/math.sqrt(2)
centers = [(1,0), (-1,0), (0,1), (0,-1), (sq2,sq2), (-sq2,sq2), (sq2,-sq2), (-sq2,-sq2)]
centers = torch.tensor([(scale * x, scale * y) for x,y in centers])
return sq2 * (0.5 * z + centers[torch.randint(len(centers), size=(n_samples,))])
elif dataset == '2spirals':
n = torch.sqrt(torch.rand(n_samples // 2)) * 540 * (2 * math.pi) / 360
d1x = - torch.cos(n) * n + torch.rand(n_samples // 2) * 0.5
d1y = torch.sin(n) * n + torch.rand(n_samples // 2) * 0.5
x = torch.cat([torch.stack([ d1x, d1y], dim=1),
torch.stack([-d1x, -d1y], dim=1)], dim=0) / 3
return x + 0.1*z
elif dataset == 'checkerboard':
x1 = torch.rand(n_samples) * 4 - 2
x2_ = torch.rand(n_samples) - torch.randint(0, 2, (n_samples,), dtype=torch.float) * 2
x2 = x2_ + x1.floor() % 2
return torch.stack([x1, x2], dim=1) * 2
elif dataset == 'rings':
n_samples4 = n_samples3 = n_samples2 = n_samples // 4
n_samples1 = n_samples - n_samples4 - n_samples3 - n_samples2
# so as not to have the first point = last point, set endpoint=False in np; here shifted by one
linspace4 = torch.linspace(0, 2 * math.pi, n_samples4 + 1)[:-1]
linspace3 = torch.linspace(0, 2 * math.pi, n_samples3 + 1)[:-1]
linspace2 = torch.linspace(0, 2 * math.pi, n_samples2 + 1)[:-1]
linspace1 = torch.linspace(0, 2 * math.pi, n_samples1 + 1)[:-1]
circ4_x = torch.cos(linspace4)
circ4_y = torch.sin(linspace4)
circ3_x = torch.cos(linspace4) * 0.75
circ3_y = torch.sin(linspace3) * 0.75
circ2_x = torch.cos(linspace2) * 0.5
circ2_y = torch.sin(linspace2) * 0.5
circ1_x = torch.cos(linspace1) * 0.25
circ1_y = torch.sin(linspace1) * 0.25
x = torch.stack([torch.cat([circ4_x, circ3_x, circ2_x, circ1_x]),
torch.cat([circ4_y, circ3_y, circ2_y, circ1_y])], dim=1) * 3.0
# random sample
x = x[torch.randint(0, n_samples, size=(n_samples,))]
# Add noise
return x + torch.normal(mean=torch.zeros_like(x), std=0.08*torch.ones_like(x))
elif dataset == "pinwheel":
rng = np.random.RandomState()
radial_std = 0.3
tangential_std = 0.1
num_classes = 5
num_per_class = n_samples // 5
rate = 0.25
rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False)
features = rng.randn(num_classes*num_per_class, 2) \
* np.array([radial_std, tangential_std])
features[:, 0] += 1.
labels = np.repeat(np.arange(num_classes), num_per_class)
angles = rads[labels] + rate * np.exp(features[:, 0])
rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
rotations = np.reshape(rotations.T, (-1, 2, 2))
data = 2 * rng.permutation(np.einsum("ti,tij->tj", features, rotations))
return torch.as_tensor(data, dtype=torch.float32)
else:
raise RuntimeError('Invalid `dataset` to sample from.')
# --------------------
# Plotting
# --------------------
@torch.no_grad()
def plot(dataset, energy, noise, epoch, device):
n_pts = 1000
range_lim = 4
# construct test points
test_grid = setup_grid(range_lim, n_pts, device)
# plot
fig, axs = plt.subplots(1, 3, figsize=(12,4.3), subplot_kw={'aspect': 'equal'})
plot_samples(dataset, axs[0], range_lim, n_pts)
plot_noise(noise, axs[1], test_grid, n_pts)
plot_energy(energy, axs[2], test_grid, n_pts)
# format
for ax in plt.gcf().axes: format_ax(ax, range_lim)
plt.tight_layout()
# save
print('Saving image to images/....')
plt.savefig('images/epoch_{}.png'.format(epoch))
plt.close()
def setup_grid(range_lim, n_pts, device):
x = torch.linspace(-range_lim, range_lim, n_pts)
xx, yy = torch.meshgrid((x, x), indexing='ij')
zz = torch.stack((xx.flatten(), yy.flatten()), dim=1)
return xx, yy, zz.to(device)
def plot_samples(dataset, ax, range_lim, n_pts):
samples = dataset.numpy()
ax.hist2d(samples[:,0], samples[:,1], range=[[-range_lim, range_lim], [-range_lim, range_lim]], bins=n_pts, cmap=plt.cm.jet)
ax.set_title('Target samples')
def plot_energy(energy, ax, test_grid, n_pts):
xx, yy, zz = test_grid
log_prob = energy(zz)
prob = log_prob.exp().cpu()
# plot
ax.pcolormesh(xx.numpy(), yy.numpy(), prob.view(n_pts,n_pts).numpy(), cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
ax.set_title('Energy density')
def plot_noise(noise, ax, test_grid, n_pts):
xx, yy, zz = test_grid
log_prob = noise.log_prob(zz)
prob = log_prob.exp().cpu()
# plot
ax.pcolormesh(xx.numpy(), yy.numpy(), prob.view(n_pts,n_pts).numpy(), cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
ax.set_title('Noise density')
def format_ax(ax, range_lim):
ax.set_xlim(-range_lim, range_lim)
ax.set_ylim(-range_lim, range_lim)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.invert_yaxis()