-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfrag.glsl
4471 lines (3493 loc) · 122 KB
/
frag.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#extension GL_OES_standard_derivatives : enable
#define PI 3.1415926536
#define TWO_PI 6.2831853072
#define PHI (1.618033988749895)
#define saturate(x) clamp(x, 0.0, 1.0)
// #define debugMapCalls
// #define debugMapMaxed
// #define SS 2
#define ORTHO 1
// #define NO_MATERIALS 1
// #define DOF 1
precision highp float;
varying vec2 fragCoord;
uniform vec2 resolution;
uniform float time;
uniform bool BLOOM;
uniform vec3 cOffset;
uniform vec3 cameraRo;
uniform vec4 offsetC;
uniform mat4 cameraMatrix;
uniform mat4 orientation;
uniform mat4 projectionMatrix;
uniform sampler2D sdf2DTexture;
uniform sampler2D uninitTex;
uniform float angle1C;
uniform float angle2C;
uniform float angle3C;
uniform vec3 colors1;
uniform vec3 colors2;
uniform float d;
// KIFS
uniform mat4 kifsM;
uniform mat4 kifsM2;
uniform float scale;
uniform vec3 offset;
uniform float rot;
// Greatest precision = 0.000001;
uniform float epsilon;
#define maxSteps 512
#define maxDistance 8.0
#define fogMaxDistance 4.5
#define slowTime time * 0.2
// v3
// #define slowTime time * 0.06666667
vec3 gPos = vec3(0.0);
vec3 gNor = vec3(0.0);
vec3 gRd = vec3(0.0);
vec3 dNor = vec3(0.0);
vec3 dRd = vec3(0.0);
const vec3 un = vec3(1., -1., 0.);
#pragma glslify: import(./time)
const float edge = 0.0025;
const float thickness = 0.01;
// Dispersion parameters
float n1 = 1.;
float n2 = 2.1;
const float amount = 0.05;
// Dof
float doFDistance = length(cameraRo) - 0.3;
// Utils
#pragma glslify: getRayDirection = require(./ray-apply-proj-matrix)
#pragma glslify: vmax = require(./hg_sdf/vmax)
float vmin (in vec2 t) {
return min(t.x, t.y);
}
float vmin (in vec3 t) {
return min(t.x, min(t.y, t.z));
}
#define combine(v1, v2, t, p) mix(v1, v2, t/p)
#ifndef range
#define range(start, stop, t) saturate((t - start) / (stop - start))
#endif
// Math
#pragma glslify: rotationMatrix = require(./rotation-matrix3)
#pragma glslify: rotationMatrix4 = require(./rotation-matrix4)
vec4 qSquare (in vec4 q) {
return vec4(q.x*q.x - q.y*q.y - q.z*q.z - q.w*q.w, 2.0*q.x*q.yzw);
}
float qLength2 (in vec4 q) {
return dot(q, q);
}
vec4 qCube ( in vec4 q ) {
vec4 q2 = q*q;
return vec4(q.x *( q2.x - 3.0*q2.y - 3.0*q2.z - 3.0*q2.w),
q.yzw*(3.0*q2.x - q2.y - q2.z - q2.w));
}
// return: [0, 1]
float triangleWave (in float t) {
return 2. * abs(mod(t, 1.) - 0.5);
}
vec2 triangleWave (in vec2 t) {
return 2. * abs(mod(t, 1.) - 0.5);
}
vec3 triangleWave (in vec3 t) {
return 2. * abs(mod(t, 1.) - 0.5);
}
vec4 triangleWave (in vec4 t) {
return 2. * abs(mod(t, 1.) - 0.5);
}
float lengthP(in vec2 q, in float p) {
return pow(dot(pow(q, vec2(p)), vec2(1)), 1.0 / p);
}
float lengthP(in vec3 q, in float p) {
return pow(dot(pow(q, vec3(p)), vec3(1)), 1.0 / p);
}
float lengthP(in vec4 q, in float p) {
return pow(dot(pow(q, vec4(p)), vec4(1)), 1.0 / p);
}
// Inverse stereographic projection of p,
// p4 lies onto the unit 3-sphere centered at 0.
// - mla https://www.shadertoy.com/view/lsGyzm
vec4 inverseStereographic(vec3 p, out float k) {
k = 2.0/(1.0+dot(p,p));
return vec4(k*p,k-1.0);
}
// Noise
#pragma glslify: cnoise4 = require(glsl-noise/classic/4d)
#pragma glslify: cnoise3 = require(glsl-noise/classic/3d)
#pragma glslify: cnoise2 = require(glsl-noise/classic/2d)
#pragma glslify: snoise2 = require(glsl-noise/simplex/2d)
#pragma glslify: snoise3 = require(glsl-noise/simplex/3d)
#pragma glslify: snoise4 = require(glsl-noise/simplex/4d)
//#pragma glslify: pnoise3 = require(glsl-noise/periodic/3d)
float ncnoise2(in vec2 x) {
return smoothstep(-1.00, 1.00, cnoise2(x));
}
float ncnoise3(in vec3 x) {
return smoothstep(-1.00, 1.00, cnoise3(x));
}
// 3D noise function (IQ)
// float noise(vec3 p) {
// vec3 ip=floor(p);
// p-=ip;
// vec3 s=vec3(7,157,113);
// vec4 h=vec4(0.,s.yz,s.y+s.z)+dot(ip,s);
// p=p*p*(3.-2.*p);
// h=mix(fract(sin(h)*43758.5),fract(sin(h+s.x)*43758.5),p.x);
// h.xy=mix(h.xz,h.yw,p.y);
// return mix(h.x,h.y,p.z);
// }
// source: https://www.shadertoy.com/view/lsl3RH
float noise( in vec2 x ) {
return sin(1.5*x.x)*sin(1.5*x.y);
}
float noise( in vec3 x ) {
return sin(1.5*x.x)*sin(1.5*x.y)*sin(1.5*x.z);
}
// Source: https://www.shadertoy.com/view/fsyGD3
float h21 (vec2 a) {
return fract(sin(dot(a.xy,vec2(12.9898,78.233)))*43758.5453123);
}
float sinoise3( in vec3 x ) {
return sin(1.5 * x.x) * sin(1.51 * x.y) * sin(1.52 * x.z * x.x);
}
float iqFBM (vec2 p) {
float f = 0.0;
f += 0.500000*cnoise2( p ); p = p*2.02;
f += 0.250000*cnoise2( p ); p = p*2.03;
f += 0.125000*cnoise2( p ); p = p*2.01;
f += 0.062500*cnoise2( p ); p = p*2.025;
return f * 1.066667;
}
float vfbm4 (vec2 p) {
float f = 0.0;
float a = PI * 0.173;
mat2 m = mat2(
cos(a), sin(a),
-sin(a), cos(a));
f += 0.500000 * noise( p ); p *= m * 2.02;
f += 0.250000 * noise( p ); p *= m * 2.03;
f += 0.125000 * noise( p ); p *= m * 2.01;
f += 0.062500 * noise( p ); p *= m * 2.025;
return f * 0.9375;
}
float vfbm4 (vec3 p) {
float f = 0.0;
const float a = 0.523;
mat3 m = rotationMatrix(vec3(1, 0, 0), a);
f += 0.500000 * noise( p ); p *= m * 2.02;
f += 0.250000 * noise( p ); p *= m * 2.03;
f += 0.125000 * noise( p ); p *= m * 2.01;
f += 0.062500 * noise( p ); p *= m * 2.025;
return f * 0.9375;
}
float vfbm6 (vec2 p) {
float f = 0.0;
float a = 1.123;
mat2 m = mat2(
cos(a), sin(a),
-sin(a), cos(a));
f += 0.500000 * (0.5 + 0.5 * noise( p )); p *= m * 2.02;
f += 0.250000 * (0.5 + 0.5 * noise( p )); p *= m * 2.03;
f += 0.125000 * (0.5 + 0.5 * noise( p )); p *= m * 2.01;
f += 0.062500 * (0.5 + 0.5 * noise( p )); p *= m * 2.025;
f += 0.031250 * (0.5 + 0.5 * noise( p )); p *= m * 2.011;
f += 0.015625 * (0.5 + 0.5 * noise( p )); p *= m * 2.0232;
return f * 0.9375;
}
float vfbm6 (vec3 p) {
float f = 0.0;
const float a = 0.823;
mat3 m = rotationMatrix(vec3(1, 0, 0), a);
f += 0.500000 * (0.5 + 0.5 * noise( p )); p *= m * 2.02;
f += 0.250000 * (0.5 + 0.5 * noise( p )); p *= m * 2.03;
f += 0.125000 * (0.5 + 0.5 * noise( p )); p *= m * 2.01;
f += 0.062500 * (0.5 + 0.5 * noise( p )); p *= m * 2.025;
f += 0.031250 * (0.5 + 0.5 * noise( p )); p *= m * 2.011;
f += 0.015625 * (0.5 + 0.5 * noise( p )); p *= m * 2.0232;
return f * 0.9375;
}
float iqFBM (vec3 p) {
float f = 0.0;
f += 0.500000*noise( p ); p = p*2.02;
f += 0.250000*noise( p ); p = p*2.03;
f += 0.125000*noise( p ); p = p*2.01;
// f += 0.062500*noise( p ); p = p*2.025;
return f * 1.066667;
}
float fbmWarp (vec2 p, out vec2 q, out vec2 s, out vec2 r) {
const float scale = 2.0;
q = vec2(
iqFBM(p + vec2(0.0, 0.0)),
iqFBM(p + vec2(7.2, 34.5)));
s = vec2(
iqFBM(p + scale * q + vec2(93.9, 234.0)),
iqFBM(p + scale * q + vec2(3.2, 123.0)));
r = vec2(
iqFBM(p + scale * s + vec2(23.9, 74.0)),
iqFBM(p + scale * s + vec2(3.2, 852.0)));
return iqFBM(p + scale * r);
}
float fbmWarp (vec2 p, out vec2 q) {
vec2 s = vec2(0);
vec2 r = vec2(0);
return fbmWarp(p, q, s, r);
}
float fbmWarp (vec2 p) {
vec2 q = vec2(0);
vec2 s = vec2(0);
vec2 r = vec2(0);
return fbmWarp(p, q, s, r);
}
float fbmWarp (vec3 p, out vec3 q, out vec3 s, vec3 r) {
const float scale = 4.0;
q = vec3(
iqFBM(p + vec3(0.0, 0.0, 0.0)),
iqFBM(p + vec3(3.2, 34.5, .234)),
iqFBM(p + vec3(7.0, 2.9, -2.42)));
s = vec3(
iqFBM(p + scale * q + vec3(23.9, 234.0, -193.0)),
iqFBM(p + scale * q + vec3(3.2, 852.0, 23.42)),
iqFBM(p + scale * q + vec3(7.0, -232.0, -2.42)));
return iqFBM(p + scale * s);
}
float fbmWarp (vec3 p, out vec3 q) {
vec3 s = vec3(0);
vec3 r = vec3(0);
return fbmWarp(p, q, r, s);
}
float vfbmWarp (vec3 p, out vec3 q, out vec3 s) {
const float scale = 4.0;
q = vec3(
vfbm4(p + vec3(0.0, 0.0, 0.0)),
vfbm4(p + vec3(3.2, 34.5, .234)),
vfbm4(p + vec3(7.0, 2.9, -2.42)));
s = vec3(
vfbm4(p + scale * q + vec3(23.9, 234.0, -193.0)),
vfbm4(p + scale * q + vec3(3.2, 852.0, 23.42)),
vfbm4(p + scale * q + vec3(7.0, -232.0, -2.42)));
return vfbm6(p + scale * s);
}
float vfbmWarp (vec3 p, out vec3 q) {
vec3 s = vec3(0);
vec3 r = vec3(0);
return vfbmWarp(p, q, r);
}
float vfbmWarp (vec3 p) {
vec3 q = vec3(0);
vec3 s = vec3(0);
vec3 r = vec3(0);
return vfbmWarp(p, q, r);
}
float vfbmWarp (vec2 p, out vec2 q, out vec2 s, vec2 r) {
const float scale = 4.0;
const float angle = 0.01 * PI;
const float si = sin(angle);
const float c = cos(angle);
const mat2 rot = mat2(c, si, -si, c);
q = vec2(
vfbm4(p + vec2(0.0, 0.0)),
vfbm4(p + vec2(3.2, 34.5)));
q *= rot;
s = vec2(
vfbm4(p + scale * q + vec2(23.9, 234.0)),
vfbm4(p + scale * q + vec2(7.0, -232.0)));
s *= rot;
// r = vec2(
// vfbm4(p + scale * s + vec2(23.9, 234.0)),
// vfbm4(p + scale * s + vec2(7.0, -232.0)));
// r *= rot;
return vfbm6(p + scale * s);
}
float vfbmWarp (vec2 p) {
vec2 q = vec2(0);
vec2 s = vec2(0);
vec2 r = vec2(0);
return vfbmWarp(p, q, s, r);
}
// vec3 hsv(vec3 c);
#pragma glslify: import(./background)
// Orbit Trap
float trapCalc (in vec3 p, in float k) {
return dot(p, p) / (k * k);
}
float fOpIntersectionRound(float a, float b, float r) {
vec2 u = max(vec2(r + a,r + b), vec2(0));
return min(-r, max (a, b)) + length(u);
}
float fOpDifferenceRound (float a, float b, float r) {
return fOpIntersectionRound(a, -b, r);
}
// IQ's capsule
float sdCapsule( vec3 p, vec3 a, vec3 b, float r ) {
vec3 pa = p - a, ba = b - a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdCapsule( vec4 p, vec4 a, vec4 b, float r ) {
vec4 pa = p - a, ba = b - a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h ) - r;
}
float sdCone( vec3 p, vec2 c ) {
// c must be normalized
float q = length(p.xy);
return dot(c,vec2(q,p.z));
}
// IQ's 2D Line Segment SDF
// Source: http://iquilezles.untergrund.net/www/articles/distfunctions2d/distfunctions2d.htm
float sdSegment( in vec2 p, in vec2 a, in vec2 b ) {
vec2 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h );
}
// Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
float fCone(vec3 p, float radius, float height) {
vec2 q = vec2(length(p.xz), p.y);
vec2 tip = q - vec2(0.0, height);
vec2 mantleDir = normalize(vec2(height, radius));
float mantle = dot(tip, mantleDir);
float d = max(mantle, -q.y);
float projected = dot(tip, vec2(mantleDir.y, -mantleDir.x));
// distance to tip
if ((q.y > height) && (projected < 0.0)) {
d = max(d, length(tip));
}
// distance to base ring
if ((q.x > radius) && (projected > length(vec2(height, radius)))) {
d = max(d, length(q - vec2(radius, 0.0)));
}
return d;
}
float dot2( vec3 v ) { return dot(v,v); }
float udQuad( vec3 p, vec3 a, vec3 b, vec3 c, vec3 d )
{
vec3 ba = b - a; vec3 pa = p - a;
vec3 cb = c - b; vec3 pb = p - b;
vec3 dc = d - c; vec3 pc = p - c;
vec3 ad = a - d; vec3 pd = p - d;
vec3 nor = cross( ba, ad );
return sqrt(
(sign(dot(cross(ba,nor),pa)) +
sign(dot(cross(cb,nor),pb)) +
sign(dot(cross(dc,nor),pc)) +
sign(dot(cross(ad,nor),pd))<3.0)
?
min( min( min(
dot2(ba*clamp(dot(ba,pa)/dot2(ba),0.0,1.0)-pa),
dot2(cb*clamp(dot(cb,pb)/dot2(cb),0.0,1.0)-pb) ),
dot2(dc*clamp(dot(dc,pc)/dot2(dc),0.0,1.0)-pc) ),
dot2(ad*clamp(dot(ad,pd)/dot2(ad),0.0,1.0)-pd) )
:
dot(nor,pa)*dot(nor,pa)/dot2(nor) );
}
float sdBox( vec2 p, vec2 b ) {
vec2 d = abs(p) - b;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdBox( vec3 p, vec3 b ) {
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float sdBox( vec4 p, vec4 b ) {
vec4 d = abs(p) - b;
return min(max(d.x,max(d.y,max(d.z, d.w))),0.0) + length(max(d,0.0));
}
float lpBox ( vec4 p, vec4 b ) {
vec4 d = abs(p) - b;
// float metricD = max(d.x,max(d.y,max(d.z, d.w)));
// float metricD = min(d.x,min(d.y,min(d.z, d.w)));
float metricD = dot(d, vec4(1));
// float pr = 0.25;
// float metricD = pow(pow(d.x, pr) + pow(d.y, pr) + pow(d.z, pr) + pow(d.w, pr), 1. / pr);
return min(metricD, 0.0) + length(max(d,0.0));
}
float udRoundBox( vec3 p, vec3 b, float r ) {
return length(max(abs(p)-b,0.0))-r;
}
float length16 (in vec2 p) {
return pow(pow(p.x, 16.0) + pow(p.y, 16.0), 0.125);
}
float length8 (in vec2 p) {
return pow(p.x * p.x * p.x * p.x * p.x * p.x * p.x * p.x
+ p.y * p.y * p.y * p.y * p.y * p.y * p.y * p.y, 0.125);
}
float length8 (in vec3 p) {
return pow(p.x * p.x * p.x * p.x * p.x * p.x * p.x * p.x
+ p.y * p.y * p.y * p.y * p.y * p.y * p.y * p.y
+ p.z * p.z * p.z * p.z * p.z * p.z * p.z * p.z, 0.125);
}
float sdTorus88( vec3 p, vec2 t ) {
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdEllipsoid( in vec3 p, in vec3 r ) {
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
}
float sdHexPrism( vec3 p, vec2 h ) {
vec3 q = abs(p);
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
}
float sdTorus( vec3 p, vec2 t ) {
vec2 q = vec2(length(p.xz)-t.x,p.y);
return length(q)-t.y;
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdTorus28( vec3 p, vec2 t )
{
vec2 q = vec2(length8(p.xz)-t.x,p.y);
return length(q)-t.y;
}
// Maximetric in radius direction & euclidean round the radius loci
float sdTorus2M( vec3 p, vec3 t )
{
vec2 d = abs(p.xz) - t.xy;
vec2 q = vec2(min(vmax(d), 0.) + length(max(d, 0.)),p.y);
return length(q)-t.z;
}
float sdPlane( vec3 p, vec4 n )
{
// n must be normalized
return dot(p,n.xyz) + n.w;
}
// Endless "corner"
float fCorner (vec2 p) {
return length(max(p, vec2(0))) + vmax(min(p, vec2(0)));
}
// IQ's line sdf
// source: https://www.shadertoy.com/view/lsXGz8
float sdLine( in vec2 p, in vec2 a, in vec2 b ) {
vec2 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h );
}
float sdLine( in vec3 p, in vec3 a, in vec3 b ) {
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return length( pa - ba*h );
}
// IQ's arc SDF
float sdArc( in vec2 p, in vec2 sca, in vec2 scb, in float ra, float rb )
{
p *= mat2(sca.x,sca.y,-sca.y,sca.x);
p.x = abs(p.x);
float k = (scb.y*p.x>scb.x*p.y) ? dot(p,scb) : length(p);
return sqrt( dot(p,p) + ra*ra - 2.0*ra*k ) - rb;
}
// IQ's cosine distance
// https://www.shadertoy.com/view/3t23WG
//----------------------------------------------------------------------
// Distance to y(x) = a + b*cos(cx+d)
//----------------------------------------------------------------------
float udCos( in vec2 p, in float a, in float b, in float c, in float d ) {
// convert all data to primitive cosine space where y(x) = w·cos(x)
p = c*(p-vec2(d,a));
float w = c*b;
// reduce to principal half cycle
p.x = mod( p.x, TWO_PI); if( p.x>(0.5*TWO_PI) ) p.x = TWO_PI - p.x;
// find zero of derivative (minimize distance)
float xa = 0.0, xb = TWO_PI;
for( int i=0; i<24; i++ ) // 24 bit precision
{
float x = 0.5*(xa+xb);
float y = x-p.x+w*sin(x)*(p.y-w*cos(x));
if( y<0.0 ) xa = x; else xb = x;
}
float x = 0.5*(xa+xb);
// compute distance
vec2 q = vec2(x,w*cos(x));
float r = length(p-q);
// convert back to the non primitive cosine space
return r/c;
}
#define Iterations 9
#pragma glslify: mandelbox = require(./mandelbox, trap=Iterations, maxDistance=maxDistance, foldLimit=1., s=scale, minRadius=0.5, rotM=kifsM)
#pragma glslify: octahedron = require(./octahedron, scale=scale, kifsM=kifsM, Iterations=Iterations)
// #pragma glslify: dodecahedron = require(./dodecahedron, Iterations=Iterations, scale=scale, kifsM=kifsM)
#pragma glslify: mengersphere = require(./menger-sphere, intrad=1., scale=scale, kifsM=kifsM)
#pragma glslify: octahedronFold = require(./folds/octahedron-fold, Iterations=5, kifsM=kifsM, trapCalc=trapCalc)
#pragma glslify: dodecahedronFold = require(./folds/dodecahedron-fold, Iterations=1, kifsM=kifsM)
//
// #pragma glslify: fold = require(./folds)
#pragma glslify: foldNd = require(./foldNd)
#pragma glslify: halfTetraFold = require(./folds/half-tetrahedral)
#pragma glslify: tetraFold = require(./folds/tetrahedral)
#pragma glslify: twist = require(./twist)
void opCheapBend (inout vec3 p, float a) {
float c = cos(a*p.y);
float s = sin(a*p.y);
mat2 m = mat2(c,-s,s,c);
p = vec3(m*p.xy,p.z);
}
void opCheapBend (inout vec3 p) {
opCheapBend(p, 20.0);
}
// The "Round" variant uses a quarter-circle to join the two objects smoothly:
float fOpUnionRound(float a, float b, float r) {
vec2 u = max(vec2(r - a,r - b), vec2(0));
return max(r, min (a, b)) - length(u);
}
vec2 dMin (vec2 d1, vec2 d2) {
return (d1.x < d2.x) ? d1 : d2;
}
vec3 dMin (vec3 d1, vec3 d2) {
return (d1.x < d2.x) ? d1 : d2;
}
// Smooth versions
vec2 dSMin (vec2 d1, vec2 d2, in float r) {
float d = fOpUnionRound(d1.x, d2.x, r);
return vec2(d, (d1.x < d2.x) ? d1.y : d2.y);
}
vec3 dSMin (vec3 d1, vec3 d2, in float r) {
float d = fOpUnionRound(d1.x, d2.x, r);
return vec3(d, (d1.x < d2.x) ? d1.yz : d2.yz);
}
vec2 dSMax (vec2 d1, vec2 d2, in float r) {
float h = saturate(0.5 + 0.5 * (d1.x - d2.x) / r);
float d = mix(d2.x, d1.x, h) + h * ( 1.0 - h ) * r;
return vec2(d, (d1.x < d2.x) ? d1.y : d2.y);
}
vec3 dSMax (vec3 d1, vec3 d2, in float r) {
float h = saturate(0.5 + 0.5 * (d1.x - d2.x) / r);
float d = mix(d2.x, d1.x, h) + h * ( 1.0 - h ) * r;
return vec3(d, (d1.x < d2.x) ? d1.yz : d2.yz);
}
vec3 dMax (vec3 d1, vec3 d2) {
return (d1.x > d2.x) ? d1 : d2;
}
vec2 dMax (vec2 d1, vec2 d2) {
return (d1.x > d2.x) ? d1 : d2;
}
// HG_SDF
float smin(float a, float b, float k){
float f = clamp(0.5 + 0.5 * ((a - b) / k), 0., 1.);
return (1. - f) * a + f * b - f * (1. - f) * k;
}
float smax(float a, float b, float k) {
return -smin(-a, -b, k);
}
mat3 globalRot;
#pragma glslify: rotMat2 = require(./rotation-matrix2)
// IQ
float sdCylinder( vec3 p, vec3 c )
{
return length(p.xz-c.xy)-c.z;
}
float sdCappedCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
// p as usual, e exponent (p in the paper), r radius or something like that
#pragma glslify: octahedral = require(./model/octahedral)
#pragma glslify: dodecahedral = require(./model/dodecahedral)
#pragma glslify: icosahedral = require(./model/icosahedral)
#pragma glslify: sdTriPrism = require(./model/tri-prism)
#pragma glslify: gyroid = require(./model/gyroid)
bool isMaterial( float m, float goal ) {
return m < goal + 1. && m > goal - .1;
}
float isMaterialSmooth( float m, float goal ) {
const float eps = .1;
return 1. - smoothstep(0., eps, abs(m - goal));
}
#pragma glslify: pModInterval1 = require(./hg_sdf/p-mod-interval1)
#pragma glslify: pMod1 = require(./hg_sdf/p-mod1.glsl)
#pragma glslify: pMod2 = require(./hg_sdf/p-mod2.glsl)
#pragma glslify: pMod3 = require(./hg_sdf/p-mod3.glsl)
#pragma glslify: pMod4 = require(./modulo/p-mod4.glsl)
#pragma glslify: pModPolar = require(./hg_sdf/p-mod-polar-c.glsl)
#pragma glslify: quad = require(glsl-easings/quintic-in-out)
// #pragma glslify: cub = require(glsl-easings/cubic-in-out)
#pragma glslify: bounceIn = require(glsl-easings/bounce-in)
#pragma glslify: bounceOut = require(glsl-easings/bounce-out)
#pragma glslify: bounce= require(glsl-easings/bounce-in-out)
#pragma glslify: cubic = require(glsl-easings/cubic-in-out)
#pragma glslify: cubicOut = require(glsl-easings/cubic-out)
#pragma glslify: cubicIn = require(glsl-easings/cubic-in)
#pragma glslify: circ = require(glsl-easings/circular-in-out)
#pragma glslify: circIn = require(glsl-easings/circular-in)
#pragma glslify: circOut = require(glsl-easings/circular-out)
#pragma glslify: expo = require(glsl-easings/exponential-in-out)
#pragma glslify: expoIn = require(glsl-easings/exponential-in)
#pragma glslify: expoOut = require(glsl-easings/exponential-out)
#pragma glslify: elastic = require(glsl-easings/elastic-in-out)
#pragma glslify: sine = require(glsl-easings/sine-in-out)
#pragma glslify: sineOut = require(glsl-easings/sine-out)
#pragma glslify: sineIn = require(glsl-easings/sine-in)
#pragma glslify: quart = require(glsl-easings/quadratic-in-out)
#pragma glslify: quartIn = require(glsl-easings/quadratic-in)
#pragma glslify: quartOut = require(glsl-easings/quadratic-out)
#pragma glslify: quint = require(glsl-easings/quintic-in-out)
#pragma glslify: quintIn = require(glsl-easings/quintic-in)
#pragma glslify: quintOut = require(glsl-easings/quintic-out)
// #pragma glslify: elasticInOut = require(glsl-easings/elastic-in-out)
#pragma glslify: elasticOut = require(glsl-easings/elastic-out)
// #pragma glslify: elasticIn = require(glsl-easings/elastic-in)
// vec3 versions
vec3 expo (in vec3 x) {
return vec3(
expo(x.x),
expo(x.y),
expo(x.z)
);
}
vec3 quad (in vec3 x) {
return vec3(
quad(x.x),
quad(x.y),
quad(x.z)
);
}
vec3 quart (in vec3 x) {
return vec3(
quart(x.x),
quart(x.y),
quart(x.z)
);
}
vec3 expoWave (in vec3 q) {
q = triangleWave(q);
return -1. + 2. * expo(q);
}
#pragma glslify: voronoi = require(./voronoi, edge=edge, thickness=thickness, mask=sqrMask)
#pragma glslify: sdFBM = require(./model/sdf-fbm, REPS=7, smoothness=0.6, clipFactor=0.1, smax=smax, smin=smin);
// #pragma glslify: band = require(./band-filter)
#pragma glslify: tetrahedron = require(./model/tetrahedron)
#pragma glslify: cellular = require(./cellular-tile)
// Starts at 0.5 goes towards 1.0
float nsin (in float t) {
return 0.5 + 0.5 * sin(TWO_PI * t);
}
vec2 nsin (in vec2 t) {
return 0.5 + 0.5 * sin(TWO_PI * t);
}
vec3 nsin (in vec3 t) {
return 0.5 + 0.5 * sin(TWO_PI * t);
}
// Logistic function
// TODO figure out if this outputs from [0, 1]
float sigmoid ( in float x ) {
const float L = 1.0;
const float k = 1.0;
const float x0 = 4.0;
x *= 8.0; // Scale so x [0, 1]
return L / ( 1.0 + exp(-k * (x - x0)) );
}
vec3 sigmoid ( in vec3 x ) {
const float L = 1.0;
const float k = 1.0;
const float x0 = 4.0;
x *= 8.0; // Scale so x [0, 1]
return L / ( 1.0 + exp(-k * (x - x0)) );
}
#pragma glslify: gyroidTriangle = require(./model/gyroid-trianglewave, triangleWave=triangleWave)
#pragma glslify: gyroidExpo = require(./model/gyroid-trianglewave, triangleWave=expoWave)
// Smooth polar mod by Paulo Falcao
// source: https://www.shadertoy.com/view/NdS3Dh
vec2 smoothPModPolar(in vec2 q, in float repetitions, in float smoothness, in float correction, in float displacement) {
repetitions *= 0.5;
float k = length(q);
float x = asin(sin(atan(q.x, q.y) * repetitions) * (1. - smoothness)) * k;
float ds = k * repetitions;
float y = mix(ds, 2. * ds - length(vec2(x, ds)), correction);
return vec2(x / repetitions, y / repetitions - displacement);
}
vec3 opElogate ( in vec3 q, in vec3 h, out float correction ) {
q = abs(q) - h;
correction = min(vmax(q), 0.);
return max(q, 0.);
}
void quadrantIndex (in vec2 q, inout float carryIndex) {
// --- Quadrant index ---
// Assuming starting with 1.
// -- y split --
// + | +
// ---|---
// - | -
carryIndex *= sign(q.y);
// -- x split --
// x2 | x1
// ----|----
// x2 | x1
carryIndex *= q.x > 0. ? 1. : 2.;
// So:
// 2 | 1
// ----|----
// -2 | -1
// This should be okay to apply multiple times to have nested quadrants
}
vec2 opElogateS ( in vec2 p, in vec2 h ) {
vec2 q = p - clamp(p, -h, h);
return q;
}
float opExtrude ( in vec3 q, in float d, in float h ) {
vec2 w = vec2(d, abs(q.z) - h);
return min(max(w.x, w.y), 0.) + length(max(w, 0.));
}
#define jTrap 14
vec2 julia (in vec4 z, in vec4 c, in float t) {
// Fractal General setup
float minD = 1e10;
float dist2dq = 1.;
float modulo2;
float avgD = 0.;
const int iterations = 200;
float dropOutInteration = float(iterations);
float iteration = 0.;
const float warpScale = 0.5;
for (int i = 0; i < iterations; i++) {
float fI = float(i);
// // General space pre-warp
// z += warpScale * 0.1000 * triangleWave(3. * z.yzwx + t * TWO_PI);
// // Kifs
// z = abs(z);
// // z *= angle2C;;
// // z.xy = abs(z.xy);
// // z.x += angle3C;
// z *= kifsM;
// z.xyz += offset;
// // z.yzwx = z.xyzw;
// // z *= rotMat2(offset.x * PI + 0.125 * PI * sin(TWO_PI * t) + 0.3);
// Julia set
// z³ power
// z' = 3q² -> |z'|² = 9|z²|²
dist2dq *= 9. * qLength2(qSquare(z));
z = qCube(z);
// // z² power
// // z' = 2q -> |z'|² = 4|z|²
// dist2dq = 2. * modulo2;
// z = qSquare(z);
z += c;
modulo2 = qLength2(z);
// // Mandelbrot set
// vec2 c = uv;
// z = cSquare(z);
// z += c;
// if (i > 2) {
// float trap = length(z);
// float trap = dot(z, z);
// float pr = 5.5;
// float d = pow(dot(pow(z, vec2(pr)), vec2(1)), 1. / pr);
float trap = length(z.xy - vec2(0.669, -0.323) + 0.4 * sin(z.zw + PI)); // circle trap
// trap = 0.5 + 0.5 * sin(TWO_PI * trap);
trap = abs(trap);
// trap -= 0.00625 * iteration / float(iterations);
trap -= 0.082;
// float trap = lineTrap(z);
avgD += trap;
minD = min(minD, trap);
// }
float dis = modulo2;
if (dis > 256.) break;
if (iteration >= dropOutInteration) break;
iteration += 1.;
}
avgD /= float(dropOutInteration);
// Fractal Hubbard-Douady potential distance estimation
// SDF(z) = log|z|·|z|/|dz| : https://iquilezles.org/www/articles/distancefractals/distancefractals.htm
float sdfD = 0.25 * log(modulo2) * sqrt(modulo2 / dist2dq);
return vec2(sdfD, minD);
}
vec2 julia (in vec4 z, in vec4 c) {
return julia(z, c, 0.);
}
vec2 julia (in vec4 z) {
vec4 c = vec4(0);
return julia(z, c, 0.);
}
// Source: https://www.shadertoy.com/view/MdcXzn
const float X_REPEAT_DIST = 0.90;
const float Z_REPEAT_DIST = 1.80;
vec3 DF_repeatHex(vec3 p)
{
//Repetition
float xRepeatDist = X_REPEAT_DIST;
float zRepeatDist = Z_REPEAT_DIST*0.5;
float latticeX = (fract(p.x/xRepeatDist+0.5)-0.5)*xRepeatDist;
float latticeY = (fract(p.z/zRepeatDist+0.5)-0.5)*zRepeatDist;
vec2 anchorPosXZ = p.xz-vec2(latticeX,latticeY);
p.x = latticeX; //Cyclic coords.
p.z = latticeY;
return p;
}
vec3 mPos = vec3(0);
vec3 mPos2 = vec3(0);
mat3 mRot = mat3(1, 0, 0, 0, 1, 0, 0, 0, 1);
float onion (in float d, in float thickness) {
return abs(d) - thickness;
}
mat3 rotOrtho (in float t) {
const vec3 rotAxis = vec3(0, 1, 0);
return rotationMatrix(rotAxis, 1.5 * PI * (0.5 + 0.5 * cos(t)));
}
// Create multiple copies of an object - http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
float opRepLim( in float p, in float s, in float lim ) {
return p-s*clamp(floor(p/s + 0.5),-lim,lim);
}