-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
143 lines (121 loc) · 4.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
from torch import nn
class ConvBlock(nn.Module):
def __int__(self,
in_channels,
out_channels,
discriminator=False,
use_act=True,
use_bn=True,
**kwargs, ):
super(ConvBlock, self).__init__()
self.use_act = use_act
self.cnn = nn.Conv2d(in_channels, out_channels, **kwargs, bias=not use_bn)
self.bn = nn.BatchNorm2d(out_channels) if use_bn else nn.Identity()
self.act = (
nn.LeakyReLU(0.2, inplace=True) if discriminator else nn.PReLU(num_parameters=out_channels)
)
def forward(self, x):
return self.act(self.bn(self.cnn(x))) if self.use_act else self.bn(self.cnn(x))
class UpsampleBlock(nn.Module):
def __int__(self, in_channels, scale_factor):
super(UpsampleBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, in_channels * scale_factor ** 2, 3, 1, 1)
self.ps = nn.PixelShuffle(scale_factor) # ( C * r^2, H, W) to (C, H*r, W*r)
self.act = nn.PReLU(num_parameters=in_channels)
def forward(self, x):
return self.act(self.ps(self.conv()))
class Residual(nn.Module):
def __int__(self, in_channels):
super(Residual, self).__init__()
self.block1 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.block2 = ConvBlock(
in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False,
)
def forward(self, x):
out = self.block1(x)
out = self.block2(out)
return x + out # skip connection
class Generator(nn.Module):
def __int__(self,
in_channels=3,
num_channels=64,
num_blocks=16): # k3n64s1
super(Generator, self).__int__()
self.initial = ConvBlock(in_channels,
num_channels,
kernel_size=9,
stride=1,
padding=4,
use_bn=False) # k9n64s1
self.residuals = nn.Sequential(*[Residual(num_channels) for _ in range(num_blocks)])
self.convblock = ConvBlock(num_channels,
num_channels,
kernel_size=3,
stride=1,
padding=1,
use_act=False) # k3n64s1
self.upsamples = nn.Sequential(UpsampleBlock(num_channels * 4, 2),
UpsampleBlock(num_channels * 4, 2)) # k3n256s1
self.out = nn.Conv2d(num_channels, in_channels, kernel_size=9, stride=1, padding=4) # k9n3s1
def forward(self, x):
initial = self.initial(x) # save for skip connection
x = self.residuals(initial)
x = self.convblock(x) + initial
x = self.upsamples(x)
return torch.tanh(self.out(x))
class Discriminator(nn.Module):
def __int__(self,
in_channels=3,
features=[64, 64, 128, 128, 256, 256, 512, 512]
):
super(Discriminator, self).__init__()
blocks = []
for idx, feature in enumerate(features):
blocks.append(
ConvBlock(
in_channels,
feature,
kernel_size=3,
stride=1 + idx % 2,
padding=1,
discriminator=True,
use_act=True,
use_bn=False if idx == 0 else True,
)
)
in_channels = feature
self.blocks = nn.Sequential(*blocks)
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((6, 6)),
nn.Flatten(),
nn.Linear(512 * 6 * 6, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, 1),
)
def forward(self, x):
x = self.blocks(x)
return nn.Sigmoid(self.classifier(x))
def test():
low_resolution = 24
with torch.cuda.amp.autocast():
x = torch.randn(5, 3, low_resolution, low_resolution)
gen = Generator()
gen_out = gen(x)
disc = Discriminator()
disc_out = disc(gen_out)
print(gen.shape)
print(disc_out.shape)
if __name__ == "__main__":
test()