-
Notifications
You must be signed in to change notification settings - Fork 0
/
3_month_talk_2.tex
270 lines (214 loc) · 10.5 KB
/
3_month_talk_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
% !TEX TS-program = pdflatex
% !TEX encoding = UTF-8 Unicode
\documentclass{beamer}
\mode<presentation>
{
\usetheme{Warsaw}
}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{sidecap}
\usepackage{xcolor}
\useoutertheme{infolines}
\title[$H \rightarrow \gamma \gamma$ at CMS]
{Analysis of Higgs bosons decaying to two photons at CMS}
%\subtitle
%{Include Only If Paper Has a Subtitle}
\author[L. D. Corpe] % (optional, use only with lots of authors)
{L. D.~Corpe}
\institute[Imperial College London] % (optional, but mostly needed)
{
Imperial College London\\
Blackett Laboratory\\
London}
\date[2014] % (optional, should be abbreviation of conference name)
{PG Initial Report Talks, 2014}
\subject{Particle Physics}
%\AtBeginSubsection[]
%{
%\begin{frame}<beamer>{Outline}
%\tableofcontents[currentsection,currentsubsection]
%\end{frame}
%}
%%%%%DOCUMENT START%%%%%%%%%%
%%%%%%TITLE a TOC%%%%%%%%%%
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
%%%%%%%%%%INTRODUCTION%%%%%%%%
\section{Introduction}
%--------------------SM Higgs intro-----------------
\subsection{The SM Higgs Boson}
%____________slide 1______________________
\begin{frame}{The Standard Model Higgs boson}{History}
\includegraphics[width=0.4\textwidth]{"Sakurai"} \quad
\includegraphics[width=0.177\textwidth]{"Higgs"} \quad
\mbox{\parbox[b][4em][b]{0.3\textwidth}{\tiny The authors of the ``1964 PRL symmetry breaking papers'' won the Sakurai Prize in 2010.
\vspace{5px}
Higgs and Englert won the Nobel prize in 2013.
\vspace{5px}
Left: Kibble, Guralnik, Hagen, Englert, Brout. Right: Higgs\\ \\} }
{\footnotesize The Higgs mechanism was independently formulated various theorists in 1964. Explains mass of $W^{\pm}$ and $Z$ bosons via symmetry breaking in the electroweak interaction. Crucially, gauge invariance is conserved. Main properties of SM Higgs:
\begin{itemize}
\pause
\vfill \item
Massive and observable. Now known to be $\sim 125$ GeV.
\pause
\vfill \item
Couples to particles proportional to their mass.
\pause
\vfill \item
Only one Higgs boson in SM, while other BSM theories predict more.
\end{itemize}
}
\end{frame}
%____________slide 2______________________
\begin{frame}{The Standard Model Higgs boson}{Production and decay at LHC}
\begin{itemize}
\vfill \item
{\tiny $H$ couples to particles $\propto m$, so main production modes at LHC are:}
\begin{center}
\includegraphics[width=0.8\textwidth]{"productions"}
\vfill \item {\tiny a) $gg$ fusion via $t$ loop, b) Vector Boson Fusion (VBF), c) Assoc. $Z,W$ production, d) Assoc. $t\bar{t}$ production.}
\end{center}
\pause
\vfill \item
{\tiny By the same token, it decays mostly to heavy particles:}
\begin{center}
\includegraphics[width=0.8\textwidth]{"decays"}
\vfill \item {\tiny Decay to 1) $b \bar{b}$ pair, 2) vector boson pair, 3) $\tau^+, \tau^-$, 4) two photons via $t$ loop (can also be $W$).}
\end{center}
\vfill \item {\tiny $t, \bar{t}$ pair kinematically forbidden. $H \rightarrow \gamma \gamma $ is rare, but one of the most sensitive channels at the LHC.}
\end{itemize}
\end{frame}
%--------------------LHC, CMS , ECAL---------------------------
\subsection{LHC, CMS and ECAL}
%____________slide 1______________________
\begin{frame}{LHC, CMS and the ECAL}{The Large Hadron Collider}
\begin{center}
\includegraphics[width=0.55\textwidth]{"LHC"}
\end{center}
\begin{itemize}
\vfill \item {\footnotesize The LHC is a 27km circumference synchrotron at CERN, as explained by my colleagues.}
\end{itemize}
\end{frame}
%____________slide 2______________________
\begin{frame}{LHC, CMS and the ECAL}{The Compact Muon Solenoid}
\begin{center}
\includegraphics[width=0.85\textwidth]{"CMSLayout"}
\end{center}
\begin{itemize}
\vfill \item {\footnotesize Explained already by previous talks - I will focus on ECAL layer.\\}
\end{itemize}
\end{frame}
%____________slide 3______________________
\begin{frame}{LHC, CMS and the ECAL}{The Electromagnetic Calorimeter}
\begin{center}
\includegraphics[width=0.65\textwidth]{"EcalView"}
{\tiny A view of the inside of the ECAL Barrel.\\}
\end{center}
\end{frame}
%____________slide 3______________________
\begin{frame}{LHC, CMS and the ECAL}{The Electromagnetic Calorimeter}
{\footnotesize The CMS ECAL is composed of an array of PbWO$_4$ crystals. \\ The Crystals are offset by an angle of 3$^o$ from the vertex to avoid particles going through the gaps in between.}
\includegraphics[width=0.5\textwidth]{"ECAL"}
\mbox{\parbox[b][4em][b]{0.45\textwidth}{
\begin{itemize}
\vfill \item \fcolorbox{black}{white}{\tiny 62,100 crystals in 36 supermodules }
\vfill \item \fcolorbox{white}{yellow}{\tiny Supermodule containing 4 modules }
\vfill \item \fcolorbox{white}{teal}{\tiny Endcaps containing 14,648 crystals }
\vfill \item \fcolorbox{white}{pink}{\tiny Preshower for $\pi^0$ ID.}
\vspace{1cm}
\end{itemize}}}
\end{frame}
%%%%%%%%%%H TO GAMMA GAMMA %%%%%%%%
\section{$H \rightarrow \gamma\gamma$}
\subsection{Photon and Vertex Identification }
%\begin{frame}{$H \rightarrow \gamma \gamma$ Analysis Strategy}
%\begin{itemize}
%\vfill \item The $H \rightarrow \gamma \gamma$ analysis relies on the fact that a small but non negligible fraction of $H$s will decay to two photons via a $t,W^{\pm}$ or $Z$ loop.
%\pause
%\vfill \item Although there is a large background from QCD processes and “non-prompt'' photons, the high resolution from the ECAL allows the reconstruction of a narrow peak above the background.
%\pause
%\vfill \item Main analysis relies heavily on boosted decision trees (BDTs)
%\end{itemize}
%\end{frame}
\begin{frame}{Photon and Vertex Identification}{Initial event selection and mass reconstruction}
\begin{itemize}
\vfill \item {\footnotesize Initial trigger identifies $\gamma$s from ECAL isolation and shower shape. A loose $E_T$ cut is also made, although a tougher one is imposed later to find Higgs decay candidates.}
\pause
\vfill \item { \footnotesize Higgs mass reconstructed using the following formula (simple 4-momentum conservation): }
$$ m_H=m_{\gamma\gamma}=\sqrt{2E_{\gamma1}E_{\gamma2}(1-\cos\alpha)} $$
\includegraphics[width=0.45\textwidth]{"Diagram"}
\mbox{\parbox[b][4em][b]{0.5\textwidth}
{\pause \vfill \item \footnotesize $E_{\gamma1},E_{\gamma 2}$ dominate mass resolution if primary interaction vertex is identified. Thankfully ECAL has excellent E resolution.
\vfill \item However, diphoton interaction vertex must be correctly identified to measure $\alpha$. \vspace{10px}}}
%\pause \vfill \item \textbf{The better the vertex reconstruction, the better the angle resolution!} \vspace{0px}}}
\end{itemize}
\end{frame}
\begin{frame}{Photon and Vertex Identification}{Vertex ID and Pair Conversion}
\begin{itemize}
\vfill \item If the diphoton vertex is reconstructed with 10mm of true position then the mass resolution is dominated by the $E_{\gamma}$ resolution.
\pause \vfill \item A BDT is used to identify vertex using kinematic properties as inputs. Also makes use of extra information from tracker if $\gamma$ has converted to $e^+ e^-$.
\pause \vfill \item We can tell if $\gamma$ has converted using $R_9 \equiv \frac{E_{3x3}}{E_{SuperCluster}} < 0.94$.
\includegraphics[width=0.4\textwidth]{"R9"} \hspace{5px}
\mbox{\parbox[b][4em][b]{0.5\textwidth}
{\footnotesize \vfill \item If $\gamma$ hits, most of the energy is deposited within $3x3$ array, so $E_{3x3} \simeq E_{5x5}$ so $R_9 \simeq 1$
\vfill \item If $\gamma$ has converted, less energy will be focused within $3x3$, so $R_9 < 1$ \vspace{30px} }}
\end{itemize}
\end{frame}
\begin{frame}{Photon and Vertex Identification}{Higgs decay candidates}
\begin{itemize}
\vfill \item Not all diphoton events are of interest! We only want those which are Higgs decay candidates.
\vfill \item Higgs decay photons should be highly energetic, so impose:
$$ E^T_{\gamma1} > \frac{m_{\gamma\gamma}}{3} \text{ and } E^T_{\gamma2} >\frac{m_{\gamma\gamma}}{4}$$
\vfill \item A further BDT is used to remove ``non-prompt'' photons and particles misidentified as photons, as they are of no interest.
%\includegraphics[width=0.4\textwidth]{"R9"}
\end{itemize}
\end{frame}
\subsection{Event Categorisation and Analysis}
\begin{frame}{Event Categorisation and Analysis}
\begin{itemize}
\vfill \item Events are segmented into categories based on expected signal to background ratio and mass resolution using a BDT.
\vfill \item This increases the overall sensitivity of the analysis.
\vfill \item The background is modelled using data rather than Monte Carlo.
\vspace{5px}
\begin{itemize}
\pause \vfill \item For each category, the $m_{\gamma\gamma}$ distribution is fitted. Candidate fitting functions include exponentials, power laws, Bernsteins (polynomials) and Laurent series.
\pause \vfill \item Fitting function chosen based on bias minimisation. Bias is negligible for all categories when Bersteins of order 3-5 (depending on category) are used.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Analysis}
\begin{itemize}{ \footnotesize
\vfill \item The mass distribution is plotted for each category and compared to the background prediction. The categories are then combined to form the global analysis.
\vfill \item In 2012, this method yielded an observed local significance of $4\sigma$ at $\sim 125$ GeV. Combined with other analyses, the total local significance was $5\sigma$, allowing a discovery to be claimed by CMS (and ATLAS).}
\includegraphics[width=0.455\textwidth]{"Plot"}
\includegraphics[width=0.4\textwidth]{"PValue"}
\end{itemize}
\end{frame}
\section{Outlook and future work}
\begin{frame}{Outlook}
\begin{itemize}
\vfill \item A final legacy paper using all data from run 1 is being prepared, currently under approval.
\pause \vfill \item In 2015, the LHC will re-start collisions, hopefully ramping up towards design value of $14$ TeV.
\pause \vfill \item This will allow more precise measurements of couplings, differential cross-sections and $J^P$.
\pause \vfill \item Any deviation from the SM could yield insight on nature or existence of BSM physics, e.g. a 2nd Higgs, or increased cross-section due to heavy BSM particles.
\pause \vfill \item For first time in history, we have found what we believe to be a scalar fundamental particle. Implications unclear.
\pause \vfill \item Although we have found the $H$, further studies are not only desirable but imperative.
\end{itemize}
\end{frame}
\begin{frame}{Questions}
\begin{center}
{\Large Thanks for listening!
Questions?}
\end{center}
\end{frame}
\end{document}