forked from jina-ai/clip-as-service
-
Notifications
You must be signed in to change notification settings - Fork 4
/
extract_features.py
248 lines (205 loc) · 9.15 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from enum import Enum
import tensorflow as tf
from tensorflow.python.estimator.model_fn import EstimatorSpec
from bert import tokenization, modeling
class PoolingStrategy(Enum):
NONE = 0
REDUCE_MAX = 1
REDUCE_MEAN = 2
REDUCE_MEAN_MAX = 3
FIRST_TOKEN = 4 # corresponds to [CLS] for single sequences
LAST_TOKEN = 5 # corresponds to [SEP] for single sequences
CLS_TOKEN = 4 # corresponds to the first token for single seq.
SEP_TOKEN = 5 # corresponds to the last token for single seq.
def __str__(self):
return self.name
@staticmethod
def from_string(s):
try:
return PoolingStrategy[s]
except KeyError:
raise ValueError()
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, input_type_ids):
# self.unique_id = unique_id
# self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def model_fn_builder(bert_config, init_checkpoint, use_one_hot_embeddings=False,
pooling_strategy=PoolingStrategy.REDUCE_MEAN,
pooling_layer=-2):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
client_id = features["client_id"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
input_type_ids = features["input_type_ids"]
model = modeling.BertModel(
config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=input_type_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
if mode != tf.estimator.ModeKeys.PREDICT:
raise ValueError("Only PREDICT modes are supported: %s" % (mode))
tvars = tf.trainable_variables()
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
encoder_layer = model.all_encoder_layers[pooling_layer]
if pooling_strategy == PoolingStrategy.REDUCE_MEAN:
pooled = tf.reduce_mean(encoder_layer, axis=1)
elif pooling_strategy == PoolingStrategy.REDUCE_MAX:
pooled = tf.reduce_max(encoder_layer, axis=1)
elif pooling_strategy == PoolingStrategy.REDUCE_MEAN_MAX:
pooled = tf.concat([tf.reduce_max(encoder_layer, axis=1),
tf.reduce_max(encoder_layer, axis=1)], axis=1)
elif pooling_strategy == PoolingStrategy.FIRST_TOKEN or pooling_strategy == PoolingStrategy.CLS_TOKEN:
pooled = tf.squeeze(encoder_layer[:, 0:1, :], axis=1)
elif pooling_strategy == PoolingStrategy.LAST_TOKEN or pooling_strategy == PoolingStrategy.SEP_TOKEN:
seq_len = tf.cast(tf.reduce_sum(input_mask, axis=1), tf.int32)
rng = tf.range(0, tf.shape(seq_len)[0])
indexes = tf.stack([rng, seq_len - 1], 1)
pooled = tf.gather_nd(encoder_layer, indexes)
elif pooling_strategy == PoolingStrategy.NONE:
pooled = encoder_layer
else:
raise NotImplementedError()
predictions = {
'client_id': client_id,
'encodes': pooled
}
return EstimatorSpec(mode=mode, predictions=predictions)
return model_fn
def convert_lst_to_features(lst_str, seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
for (ex_index, example) in enumerate(read_examples(lst_str)):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
# if ex_index < 5:
# tf.logging.info("*** Example ***")
# tf.logging.info("unique_id: %s" % (example.unique_id))
# tf.logging.info("tokens: %s" % " ".join(
# [tokenization.printable_text(x) for x in tokens]))
# tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# tf.logging.info(
# "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
yield InputFeatures(
# unique_id=example.unique_id,
# tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids)
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def read_examples(lst_strs):
"""Read a list of `InputExample`s from a list of strings."""
unique_id = 0
for ss in lst_strs:
line = tokenization.convert_to_unicode(ss)
if not line:
continue
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
yield InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)
unique_id += 1