-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathpointnet2_model.py
131 lines (121 loc) · 4.5 KB
/
pointnet2_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F
from pointnet2_ops.pointnet2_modules import PointnetFPModule, PointnetSAModule, PointnetSAModuleMSG
from utils import weights_init_kaiming, weights_init_classifier
import numpy as np
class PointNet2SSG(nn.Module):
def __init__(self, output_classes=751, init_points = 512, input_dims=3, dropout_prob=0.5, use_xyz=True):
super().__init__()
self.SA_modules = nn.ModuleList()
self.SA_modules.append(
PointnetSAModule(
npoint= init_points,
radius=0.2,
nsample=64,
mlp=[input_dims, 64, 64, 128],
use_xyz=use_xyz,
use_se = False,
)
)
#batchsize 512 128
self.SA_modules.append(
PointnetSAModule(
npoint=128,
radius=0.4,
nsample=64,
mlp=[128, 128, 128, 256],
use_xyz = use_xyz,
use_se = False
)
)
self.SA_modules.append(
PointnetSAModule(
mlp=[256, 256, 512, 1024],
use_xyz = use_xyz,
use_se = False
)
)
self.fc_layer = nn.Sequential(
nn.Linear(1024, 512, bias=True),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2,True),
nn.Linear(512, 512, bias=True),
nn.BatchNorm1d(512),
nn.Dropout(dropout_prob)
)
self.classifier = nn.Sequential(
nn.Linear(512, output_classes)
)
# initial
self.SA_modules.apply(weights_init_kaiming)
self.fc_layer.apply(weights_init_kaiming)
self.classifier.apply(weights_init_classifier)
def forward(self, xyz, rgb, istrain=False):
r"""
Forward pass of the network
Parameters
----------
pointcloud: Variable(torch.cuda.FloatTensor)
(B, N, 3 + input_channels) tensor
Point cloud to run predicts on
Each point in the point-cloud MUST
be formated as (x, y, z, features...)
"""
features = rgb.transpose(1, 2).contiguous()
for module in self.SA_modules:
xyz, features = module(xyz, features)
return self.classifier( self.fc_layer(features.squeeze(-1)) )
class PointNet2MSG(PointNet2SSG):
def __init__(self, output_classes=751, init_points = 512, input_dims=3, dropout_prob=0.5, use_xyz=True):
super().__init__( output_classes = output_classes, dropout_prob=dropout_prob)
self.SA_modules = nn.ModuleList()
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=512,
radii=[0.1, 0.2, 0.4],
nsamples=[16, 32, 128],
mlps=[[3, 32, 32, 64], [3, 64, 64, 128], [3, 64, 96, 128]],
use_xyz=use_xyz,
use_se=False,
)
)
input_channels = 64 + 128 + 128
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=128,
radii=[0.2, 0.4, 0.8],
nsamples=[32, 64, 128],
mlps=[
[input_channels, 64, 64, 128],
[input_channels, 128, 128, 256],
[input_channels, 128, 128, 256],
],
use_xyz=use_xyz,
use_se=False,
)
)
self.SA_modules.append(
PointnetSAModule(
mlp=[128 + 256 + 256, 256, 512, 1024],
use_xyz=use_xyz,
use_se=False,
)
)
self.SA_modules.apply(weights_init_kaiming)
if __name__ == '__main__':
# Here I left a simple forward function.
# Test the model, before you train it.
# net = Model_dense( 20, [64, 128, 256, 512], [512, 512], output_classes=751, init_points = 512, input_dims=3, dropout_prob=0.5, npart= 1)
net = PointNet2MSG(output_classes=751, init_points = 512, input_dims=3, dropout_prob=0.5 )
xyz = torch.FloatTensor(np.random.normal(size=(4,6890, 3))).cuda()
rgb = torch.FloatTensor(4, 6890, 3).cuda()
net = net.cuda()
print(net)
net.proj_output = nn.Sequential()
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Number of parameters: %.2f M'% (params/1e6) )
output = net(xyz, rgb)
print('net output size:')
print(output.shape)