-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
model_efficient2.py
385 lines (352 loc) · 16.6 KB
/
model_efficient2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from dgl.nn.pytorch import KNNGraph, EdgeConv, GATConv, GraphConv, SAGEConv, SGConv, GatedGraphConv
from pointnet2_ops.pointnet2_modules import PointnetFPModule, PointnetSAModule, PointnetSAModuleMSG
from pointnet2_ops import pointnet2_utils
from gated_gcn_layer import GatedGCNLayer
from KNNGraphE import KNNGraphE
import numpy as np
from market3d import Market3D
from utils import get_graph_feature, weights_init_kaiming, weights_init_classifier, drop_connect, farthest_point_sample, channel_shuffle
from ptflops import get_model_complexity_info
from functools import partial
from torch.utils.data import DataLoader
class EdgeConv_Light(EdgeConv):
def __init__(self, in_feat, out_feat, batch_norm=False):
super().__init__(in_feat, out_feat, batch_norm)
self.theta = nn.Linear(in_feat, out_feat, bias = False)
self.phi = nn.Linear(in_feat, out_feat, bias = False)
class ModelE(nn.Module):
def __init__(self, k, feature_dims, emb_dims, output_classes, init_points = 512, input_dims=3,
dropout_prob=0.5, npart=1, id_skip=False, drop_connect_rate=0, res_scale = 1.0,
light = False, bias = False, cluster='xyz', conv='EdgeConv', use_xyz=True,
use_se = True, graph_jitter = False, pre_act = False, norm = 'bn', stride=2,
layer_drop = 0, num_conv=1, shuffle = 0 ):
super(ModelE, self).__init__()
self.npart = npart
self.norm = norm
self.shuffle = shuffle
self.graph_jitter = graph_jitter
self.res_scale = res_scale
self.id_skip = id_skip
self.drop_connect_rate = drop_connect_rate
self.nng = KNNGraphE(k) # with random neighbor
self.conv = nn.ModuleList()
self.conv_s1 = nn.ModuleList()
self.conv_s2 = nn.ModuleList()
self.bn = nn.ModuleList()
self.sa = nn.ModuleList()
self.cluster = cluster
self.feature_dims = feature_dims
self.conv_type = conv
self.init_points = init_points
self.k = k
self.light = light
self.pre_act = pre_act
self.num_conv = num_conv
#self.proj_in = nn.Linear(input_dims, input_dims)
self.num_layers = len(feature_dims)
npoint = init_points
last_npoint = -1
for i in range(self.num_layers):
if k==1:
self.conv.append(nn.Conv2d(feature_dims[i-1] if i > 0 else input_dims,
feature_dims[i] , kernel_size=1,
bias = True))
self.bn.append( nn.BatchNorm1d( feature_dims[i] ))
elif conv == 'EdgeConv':
for j in range(self.num_conv):
if j==0:
self.conv.append( nn.Conv2d(
feature_dims[i - 1]*2 if i > 0 else input_dims*2,
feature_dims[i],
kernel_size=1,
groups = 2 if i>0 else 1,
bias = False ))
else:
self.conv.append( nn.Conv2d(
feature_dims[i]*2,
feature_dims[i],
kernel_size=1,
groups = 2, #feature_dims[i],
bias = False ))
if i==0 and j==0 and pre_act:
norm_dim = input_dims
else:
norm_dim = feature_dims[i-1] if pre_act and j==0 else feature_dims[i]
if norm == 'ln':
if layer_drop>0:
self.bn.append(nn.Sequential(
nn.LayerNorm(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
nn.LayerNorm(norm_dim))
else:
if layer_drop>0:
self.bn.append(nn.Sequential(
nn.BatchNorm1d(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
nn.BatchNorm1d(norm_dim))
if i>0 and feature_dims[i]>feature_dims[i-1]:
npoint = npoint//stride
if npoint != last_npoint:
if id_skip:
self.conv_s2.append( nn.Conv1d(feature_dims[i-1] if i > 0 else input_dims,
feature_dims[i], kernel_size=1,
groups = feature_dims[i-1] if i > 0 else input_dims,
bias = False))
self.sa.append(PointnetSAModule(
npoint=npoint,
radius=0.2,
nsample=64,
mlp=[feature_dims[i], feature_dims[i], feature_dims[i]],
fuse = 'add',
norml = 'bn',
activation = 'relu',
use_se = use_se,
use_xyz = use_xyz,
use_neighbor = False,
light = False
))
last_npoint = npoint
#if id_skip:
# self.conv_s1.append( nn.Linear(feature_dims[i], feature_dims[i] ))
self.embs = nn.ModuleList()
self.bn_embs = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.partpool = nn.AdaptiveAvgPool1d(self.npart)
if self.npart == 1:
self.embs.append(nn.Linear(
# * 2 because of concatenation of max- and mean-pooling
feature_dims[-1]*2, emb_dims[0], bias=bias))
self.bn_embs.append(nn.BatchNorm1d(emb_dims[0]))
self.dropouts.append(nn.Dropout(dropout_prob, inplace=True))
self.proj_output = nn.Linear(emb_dims[0], output_classes)
self.proj_output.apply(weights_init_classifier)
else:
self.proj_outputs = nn.ModuleList()
for i in range(0, self.npart):
self.embs.append(nn.Linear(feature_dims[-1], 512, bias=bias))
self.bn_embs.append(nn.BatchNorm1d(512))
self.dropouts.append(nn.Dropout(dropout_prob, inplace=True))
self.proj_outputs.append(nn.Linear(512, output_classes))
self.proj_outputs.apply(weights_init_classifier)
# initial
#self.proj_in.apply(weights_init_kaiming)
self.conv.apply(weights_init_kaiming)
self.conv_s1.apply(weights_init_kaiming)
self.conv_s2.apply(weights_init_kaiming)
weights_init_kaiming2 = lambda x:weights_init_kaiming(x,L=self.num_layers)
self.sa.apply(weights_init_kaiming2)
#self.proj.apply(weights_init_kaiming)
self.embs.apply(weights_init_kaiming)
self.bn.apply(weights_init_kaiming)
self.bn_embs.apply(weights_init_kaiming)
self.npart = npart
def forward(self, xyz, rgb, istrain=False):
hs = []
#xyz_copy = xyz.clone()
#rgb_copy = rgb.clone()
batch_size, n_points, _ = xyz.shape
part_length = n_points//self.npart
last_point = -1
last_feature_dim = -1
#h = self.proj_in(rgb)
h = rgb
s2_count = 0
for i in range(self.num_layers):
h_input = h.clone()
xyz_input = xyz.clone()
batch_size, n_points, feature_dim = h.shape
######## Build Graph #########
last_point = n_points
######### Dynamic Graph Conv #########
xyz = xyz.transpose(1, 2).contiguous()
#print(h.shape) # batchsize x point_number x feature_dim
h = h.transpose(1, 2).contiguous()
for j in range(self.num_conv):
index = self.num_conv*i+j
####### BN + ReLU #####
if self.pre_act == True:
if self.norm == 'ln':
h = h.transpose(1, 2).contiguous()
h = self.bn[index](h)
h = h.transpose(1, 2).contiguous()
else:
h = self.bn[index](h)
h = F.leaky_relu(h, 0.2)
####### Graph Feature ###########
if self.k==1 and j==0:
h = h.unsqueeze(-1)
else:
if i == self.num_layers-1:
if self.cluster == 'xyz':
h = get_graph_feature(xyz, h, k=self.k)
elif self.cluster == 'xyzrgb' or self.cluster == 'allxyzrgb':
h = get_graph_feature( torch.cat( (xyz, h), 1), h, k=self.k)
else:
# Common Layers
if self.cluster == 'allxyzrgb':
h = get_graph_feature( torch.cat( (xyz, h), 1), h, k=self.k)
else:
h = get_graph_feature(xyz, h, k=self.k)
####### Conv ##########
h = self.conv[index](h)
h = h.max(dim=-1, keepdim=False)[0]
####### BN + ReLU #####
if self.pre_act == False:
if self.norm == 'ln':
h = h.transpose(1, 2).contiguous()
h = self.bn[index](h)
h = h.transpose(1, 2).contiguous()
else:
h = self.bn[index](h)
h = F.leaky_relu(h, 0.2)
######### Residual Before Downsampling#############
if self.id_skip==1:
if istrain and self.drop_connect_rate>0:
h = drop_connect(h, p=self.drop_connect_rate, training=istrain)
if feature_dim != last_feature_dim:
h_input = self.conv_s2[s2_count](h_input)
h = h_input + self.res_scale * h
#print(h.shape) # batchsize x point_number x feature_dim
batch_size, feature_dim, n_points = h.shape
######### PointNet++ MSG ########
if feature_dim != last_feature_dim:
#h = h.transpose(1, 2).contiguous()
xyz, h = self.sa[s2_count](xyz_input, h)
#h = h.transpose(1, 2).contiguous()
if self.id_skip == 2:
h_input = pointnet2_utils.gather_operation(
h_input.transpose(1, 2).contiguous(),
pointnet2_utils.furthest_point_sample(xyz_input, h.shape[2] )
)
else:
xyz = xyz.transpose(1, 2).contiguous()
h_input = h_input.transpose(1, 2).contiguous()
######### Residual After Downsampling (Paper) #############
if self.id_skip==2:
if istrain and self.drop_connect_rate>0:
h = drop_connect(h, p=self.drop_connect_rate, training=istrain)
if feature_dim != last_feature_dim:
h_input = self.conv_s2[s2_count](h_input)
h = h_input + self.res_scale * h
if self.shuffle>0:
h = channel_shuffle(h, self.shuffle)
h = h.transpose(1, 2).contiguous()
if feature_dim != last_feature_dim:
s2_count +=1
last_feature_dim = feature_dim
#print(xyz.shape, h.shape)
if self.npart==1:
# Pooling
h_max, _ = torch.max(h, 1)
h_avg = torch.mean(h, 1)
hs.append(h_max)
hs.append(h_avg)
h = torch.cat(hs, 1)
h = self.embs[0](h)
h = self.bn_embs[0](h)
h = self.dropouts[0](h)
h = self.proj_output(h)
else:
# Sort
#batch_size, n_points, _ = h.shape
#y_index = torch.argsort(xyz[:, :, 1],dim = 1).view(batch_size * n_points, -1)
#h = h.view(batch_size * n_points, -1)
#h = h[y_index, :].view(batch_size, n_points, -1)
h = h.transpose(1, 2)
# Part Pooling
h = self.partpool(h)
for i in range(self.npart):
part_h = h[:,:,i]
part_h = self.embs[i](part_h)
part_h = self.bn_embs[i](part_h)
part_h = self.dropouts[i](part_h)
part_h = self.proj_outputs[i](part_h)
hs.append(part_h)
h = hs
return h
class ModelE_dense2(ModelE):
def __init__(self, k, feature_dims, emb_dims, output_classes, init_points = 512, input_dims=3,
dropout_prob=0.5, npart=1, id_skip=False, drop_connect_rate=0, res_scale=1.0,
light=False, bias = False, cluster='xyz', conv='EdgeConv', use_xyz=True,
use_se=True, graph_jitter = False, pre_act = False, norm = 'bn', stride=2,
layer_drop = 0, num_conv=1, shuffle=0, temp = False):
super().__init__(k, feature_dims, emb_dims, output_classes, init_points, input_dims,
dropout_prob, npart, id_skip, drop_connect_rate, res_scale,
light, bias, cluster, conv, use_xyz, use_se, graph_jitter, pre_act, norm, stride,
layer_drop, num_conv, shuffle)
self.sa = nn.ModuleList()
npoint = init_points
if temp:
self.logit_scale = nn.Parameter(torch.ones(()), requires_grad = True)
last_npoint = -1
for i in range(len(feature_dims)):
if i>0 and feature_dims[i]>feature_dims[i-1]:
npoint = npoint//stride
rest_feature = feature_dims[i] - 2 * (feature_dims[i]//3)
if npoint != last_npoint:
self.sa.append( PointnetSAModuleMSG(
npoint=npoint,
radii = [0.1, 0.2, 0.4],
nsamples = [4, 8, 12],
mlps=[
[feature_dims[i], feature_dims[i]//3, feature_dims[i]//3],
[feature_dims[i], feature_dims[i]//3, feature_dims[i]//3],
[feature_dims[i], feature_dims[i]//3, rest_feature],
],
fuse = 'concat', # fuse = 'add'
norml = 'bn',
activation = 'relu',
use_se = use_se,
use_xyz = use_xyz,
use_neighbor = False,
light = light
)
)
last_npoint = npoint
# since add 3 branch
weights_init_kaiming2 = lambda x:weights_init_kaiming(x, L=self.num_layers)
self.sa.apply(weights_init_kaiming2)
if __name__ == '__main__':
# Here I left a simple forward function.
# Test the model, before you train it.
net = ModelE_dense2( 5, [48, 96, 96, 192, 192, 384, 384], [512], stride=4,
output_classes=751, cluster='xyzrgb', init_points = 512,
input_dims=3, dropout_prob=0.5, npart= 1, id_skip=2,
pre_act = False, norm = 'bn', layer_drop=0, num_conv=2, light=False,
shuffle = 3)
# net = Model_dense( 20, [40,40,80,80,192,192,320,320, 512], [512], output_classes=751,
# init_points = 512, input_dims=3, dropout_prob=0.5, npart= 1, id_skip=True,
# light=True, cluster='xyz', conv='SAGEConv', use_xyz=False)
xyz = torch.FloatTensor(np.random.normal(size=(4, 6890, 3))).cuda()
rgb = torch.FloatTensor(4, 6890, 3).cuda()
net = net.cuda()
print(net)
net.proj_output = nn.Sequential()
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Number of parameters: %.2f M'% (params/1e6) )
#output = net(xyz, rgb)
market_data = Market3D('./2DMarket', flip=True, slim=0.25, bg=True)
CustomDataLoader = partial(
DataLoader,
num_workers=0,
batch_size=8,
shuffle=True,
drop_last=True)
query_loader = CustomDataLoader(market_data.query())
batch0,label0 = next(iter(query_loader))
batch0 = batch0[0].unsqueeze(0)
print(batch0.shape)
macs, params = get_model_complexity_info(net, batch0.cuda(), ((round(6890*0.5), 3) ), as_strings=True, print_per_layer_stat=False, verbose=True)
#print(macs)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
#print(output.shape)