-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfinetune_mce.py
168 lines (138 loc) · 5.47 KB
/
finetune_mce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import math
import torch
from datasets import load_dataset, Dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
DataCollatorForTokenClassification,
)
import time
from peft import prepare_model_for_kbit_training, PeftModel
from finetune import tokenize
from optimizers.sophia import SophiaG
parser = argparse.ArgumentParser("superalignment", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--model_name", default="mistralai/Mistral-7B-v0.1", type=str)
parser.add_argument("--init", help="path to initial adapter checkpoint", default="exps/mistral-translate-uk-0.15.full-lora.4bit.diff-tokenizer.sophiag.3m_sorted_dataset", type=str)
parser.add_argument("--exp", type=str, required=True, help="path output experiment checkpoint")
parser.add_argument("--data", type=str, default=f"eval-beams/exps-mistral-translate-uk-0.15.full-lora.4bit.diff-tokenizer.sophiag.3m_sorted_dataset.beam25.jsonl", help="path to eval-beams jsonl file")
parser.add_argument("--neg", default=[1,5,10], type=int, nargs='+', help="indices of negative examples per positive example")
parser.add_argument("--lr", default=1e-7, type=float, help="learning rate")
parser.add_argument("--epochs", default=2, type=int, help="number of epochs")
parser.add_argument("--clip", default=0.1, type=float, help="max gradient norm fors clipping")
parser.add_argument("--warmup", default=100, type=int, help="number of warmup steps")
args = parser.parse_args()
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=False,
)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
model_max_length=1024,
use_fast=False,
padding_side="right",
add_eos_token=True,
add_bos_token=False,
)
tokenizer.pad_token = tokenizer.eos_token
collator = DataCollatorForTokenClassification(
tokenizer,
pad_to_multiple_of=1,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
quantization_config=quant_config,
device_map="auto",
)
model = prepare_model_for_kbit_training(model)
model = PeftModel.from_pretrained(
model,
args.init,
)
model.config.use_cache = False
beam_data = load_dataset(
"json",
data_files=args.data,
split="train"
)
dataset = Dataset.from_list(beam_data.to_pandas().groupby("id").apply(lambda x: {
"id": x.iloc[0]["id"],
"src": x.iloc[0]["src"],
"ref": x.iloc[0]["ref"],
"hypotheses": x["hyp"].tolist(),
"ranks": x["rank"].tolist()
}).tolist())
dataset = dataset.map(lambda x: {
'pos': tokenize(tokenizer, f'[INST] {x["src"]} [/INST] {x["ref"]}'),
'neg': [tokenize(tokenizer, f'[INST] {x["src"]} [/INST] {hypo}') for hypo in [x["hypotheses"][i] for i in args.neg]]
})
def mce_forward(model, batch):
"""Minimum classification error forward pass"""
pos = collator(batch['pos'])
pos_forward = model(
input_ids=pos['input_ids'],
attention_mask=pos['attention_mask'],
labels=pos['labels'],
)
neg_forwards = []
for neg in batch['neg']:
neg = collator(neg)
neg_forwards.append(model(
input_ids=neg['input_ids'],
attention_mask=neg['attention_mask'],
labels=neg['labels'],
).loss)
neg_loss = torch.stack(neg_forwards).logsumexp(dim=-1) + math.log(1/len(neg_forwards))
loss = pos_forward.loss - neg_loss
return loss
def train(model, dataset, optimizer, args, cooldown=True):
model.train()
optimizer.zero_grad(set_to_none=True)
step = 1
steps = len(dataset) * args.epochs
print(f'MCE training for {args.epochs} epochs')
now = time.monotonic()
for epoch in range(args.epochs):
for batch in dataset.shuffle().iter(batch_size=8):
loss = mce_forward(model, batch)
if loss < 0:
print(f'negative loss for examples {batch["id"]}: {loss.item()}, skipping batch', flush=True)
print(batch['src'])
print(batch['ref'])
print([[x[i] for i in args.neg] for x in batch['hypotheses']])
continue
loss.backward()
grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(model.parameters(), args.clip)
if step < args.warmup:
# linear warmup
current_lr = (step/args.warmup) * args.lr
elif cooldown:
# linear cooldown
current_lr = (1 - (step-args.warmup)/(steps-args.warmup)) * args.lr
else:
current_lr = args.lr
optimizer.param_groups[0]['lr'] = current_lr
optimizer.step()
optimizer.zero_grad(set_to_none=True)
if step == 1 or step % 2 == 0:
then = time.monotonic()
print(f'{step:6} steps, {loss:.4f} loss,',
f'{current_lr:.8f} lr,', f'{grad_norm:.4f} grad norm, {then-now:.4f} elapsed', flush=True)
now = then
step += 1
def mark_lora_as_trainable_(model):
assert model.peft_config['default'].bias == 'none'
for n,p in model.named_parameters():
if model.prefix in n:
p.requires_grad_(True)
if __name__ == '__main__':
mark_lora_as_trainable_(model)
optimizer = SophiaG(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.lr,
)
train(model, dataset, optimizer, args)
model.save_pretrained(args.exp)