diff --git a/math/src/elliptic_curve/point.rs b/math/src/elliptic_curve/point.rs index b55b541e1..7652981c5 100644 --- a/math/src/elliptic_curve/point.rs +++ b/math/src/elliptic_curve/point.rs @@ -42,7 +42,7 @@ impl ProjectivePoint { let [x, y, z] = self.coordinates(); // If it's the point at infinite if z == &FieldElement::zero() { - // We make sure all the points in the infinite have the same values + // We make sure all the points at infinite have the same values return Self::new([ FieldElement::zero(), FieldElement::one(), @@ -63,7 +63,80 @@ impl PartialEq for ProjectivePoint { } impl Eq for ProjectivePoint {} +#[derive(Debug, Clone)] + +pub struct JacobianPoint { + pub value: [FieldElement; 3], +} + +impl JacobianPoint { + /// Creates an elliptic curve point giving the Jacobian [x: y: z] coordinates. + pub const fn new(value: [FieldElement; 3]) -> Self { + Self { value } + } + /// Returns the `x` coordinate of the point. + pub fn x(&self) -> &FieldElement { + &self.value[0] + } + + /// Returns the `y` coordinate of the point. + pub fn y(&self) -> &FieldElement { + &self.value[1] + } + + /// Returns the `z` coordinate of the point. + pub fn z(&self) -> &FieldElement { + &self.value[2] + } + + /// Returns a tuple [x, y, z] with the coordinates of the point. + pub fn coordinates(&self) -> &[FieldElement; 3] { + &self.value + } + + pub fn to_affine(&self) -> Self { + let [x, y, z] = self.coordinates(); + // If it's the point at infinite + if z == &FieldElement::zero() { + // We make sure all the points at infinite have the same values + return Self::new([ + FieldElement::one(), + FieldElement::one(), + FieldElement::zero(), + ]); + }; + let inv_z = z.inv().unwrap(); + let inv_z_square = inv_z.square(); + let inv_z_cube = &inv_z_square * &inv_z; + JacobianPoint::new([x * inv_z_square, y * inv_z_cube, FieldElement::one()]) + } +} + +impl PartialEq for JacobianPoint { + fn eq(&self, other: &Self) -> bool { + // In Jacobian coordinates, the equality of two points is defined as: + // X1 * Z2^2 == X2 * Z1^2 y Y1 * Z2^3 == Y2 * Z1^3 + + let [px, py, pz] = self.coordinates(); + let [qx, qy, qz] = other.coordinates(); + + let zp_sq = pz.square(); + let zq_sq = qz.square(); + + let zp_cu = &zp_sq * pz; + let zq_cu = &zq_sq * qz; + + let xp_zq_sq = px * zq_sq; + let xq_zp_sq = qx * zp_sq; + + let yp_zq_cu = py * zq_cu; + let yq_zp_cu = qy * zp_cu; + + (xp_zq_sq == xq_zp_sq) && (yp_zq_cu == yq_zp_cu) + } +} +impl Eq for JacobianPoint {} #[cfg(test)] mod tests { use crate::cyclic_group::IsGroup; diff --git a/math/src/elliptic_curve/short_weierstrass/curves/bls12_381/curve.rs b/math/src/elliptic_curve/short_weierstrass/curves/bls12_381/curve.rs index ece973a4f..a080aa77b 100644 --- a/math/src/elliptic_curve/short_weierstrass/curves/bls12_381/curve.rs +++ b/math/src/elliptic_curve/short_weierstrass/curves/bls12_381/curve.rs @@ -13,6 +13,8 @@ use crate::{ pub const SUBGROUP_ORDER: U256 = U256::from_hex_unchecked("73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001"); +pub const CURVE_COFACTOR: U256 = U256::from_hex_unchecked("0x396c8c005555e1568c00aaab0000aaab"); + pub type BLS12381FieldElement = FieldElement; pub type BLS12381TwistCurveFieldElement = FieldElement; diff --git a/math/src/elliptic_curve/short_weierstrass/point.rs b/math/src/elliptic_curve/short_weierstrass/point.rs index ec30219b1..888d3f50a 100644 --- a/math/src/elliptic_curve/short_weierstrass/point.rs +++ b/math/src/elliptic_curve/short_weierstrass/point.rs @@ -1,7 +1,7 @@ use crate::{ cyclic_group::IsGroup, elliptic_curve::{ - point::ProjectivePoint, + point::{JacobianPoint, ProjectivePoint}, traits::{EllipticCurveError, FromAffine, IsEllipticCurve}, }, errors::DeserializationError, @@ -15,7 +15,6 @@ use super::traits::IsShortWeierstrass; use crate::traits::AsBytes; #[cfg(feature = "alloc")] use alloc::vec::Vec; - #[derive(Clone, Debug)] pub struct ShortWeierstrassProjectivePoint(pub ProjectivePoint); @@ -85,7 +84,7 @@ impl ShortWeierstrassProjectivePoint { let zp = eight_s_cube; Self::new([xp, yp, zp]) } - + // https://hyperelliptic.org/EFD/g1p/data/shortw/projective/addition/madd-1998-cmo pub fn operate_with_affine(&self, other: &Self) -> Self { let [px, py, pz] = self.coordinates(); let [qx, qy, _qz] = other.coordinates(); @@ -377,11 +376,229 @@ where } } +#[derive(Clone, Debug)] +pub struct ShortWeierstrassJacobianPoint(pub JacobianPoint); + +impl ShortWeierstrassJacobianPoint { + /// Creates an elliptic curve point giving the projective [x: y: z] coordinates. + pub const fn new(value: [FieldElement; 3]) -> Self { + Self(JacobianPoint::new(value)) + } + + /// Returns the `x` coordinate of the point. + pub fn x(&self) -> &FieldElement { + self.0.x() + } + + /// Returns the `y` coordinate of the point. + pub fn y(&self) -> &FieldElement { + self.0.y() + } + + /// Returns the `z` coordinate of the point. + pub fn z(&self) -> &FieldElement { + self.0.z() + } + + /// Returns a tuple [x, y, z] with the coordinates of the point. + pub fn coordinates(&self) -> &[FieldElement; 3] { + self.0.coordinates() + } + + /// Creates the same point in affine coordinates. That is, + /// returns [x / z^2: y / z^3: 1] where `self` is [x: y: z]. + /// Panics if `self` is the point at infinity. + pub fn to_affine(&self) -> Self { + Self(self.0.to_affine()) + } + + pub fn double(&self) -> Self { + if self.is_neutral_element() { + return self.clone(); + } + let [x1, y1, z1] = self.coordinates(); + //http://www.hyperelliptic.org/EFD/g1p/data/shortw/jacobian-0/doubling/dbl-2009-l + + if E::a() == FieldElement::zero() { + let a = x1.square(); // A = x1^2 + let b = y1.square(); // B = y1^2 + let c = b.square(); // C = B^2 + let x1_plus_b = x1 + &b; // (X1 + B) + let x1_plus_b_square = x1_plus_b.square(); // (X1 + B)^2 + let d = (&x1_plus_b_square - &a - &c).double(); // D = 2 * ((X1 + B)^2 - A - C) + let e = &a.double() + &a; // E = 3 * A + let f = e.square(); // F = E^2 + let x3 = &f - &d.double(); // X3 = F - 2 * D + let y3 = &e * (&d - &x3) - &c.double().double().double(); // Y3 = E * (D - X3) - 8 * C + let z3 = (y1 * z1).double(); // Z3 = 2 * Y1 * Z1 + + Self::new([x3, y3, z3]) + } else { + // http://www.hyperelliptic.org/EFD/g1p/data/shortw/jacobian-0/doubling/dbl-2009-alnr + // http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l + let xx = x1.square(); // XX = X1^2 + let yy = y1.square(); // YY = Y1^2 + let yyyy = yy.square(); // YYYY = YY^2 + let zz = z1.square(); // ZZ = Z1^2 + let s = ((x1 + &yy).square() - &xx - &yyyy).double(); // S = 2 * ((X1 + YY)^2 - XX - YYYY) + let m = &xx.double() + &xx + &E::a() * &zz.square(); // M = 3 * XX + a * ZZ^2 + let x3 = m.square() - &s.double(); // X3 = M^2 - 2 * S + let y3 = m * (&s - &x3) - &yyyy.double().double().double(); // Y3 = M * (S - X3) - 8 * YYYY + let z3 = (y1 + z1).square() - &yy - &zz; // Z3 = (Y1 + Z1)^2 - YY - ZZ + + Self::new([x3, y3, z3]) + } + } + + pub fn operate_with_affine(&self, other: &Self) -> Self { + let [x1, y1, z1] = self.coordinates(); + let [x2, y2, _z2] = other.coordinates(); + + if self.is_neutral_element() { + return other.clone(); + } + if other.is_neutral_element() { + return self.clone(); + } + + let z1z1 = z1.square(); + let u1 = x1; + let u2 = x2 * &z1z1; + let s1 = y1; + let s2 = y2 * z1 * &z1z1; + + if *u1 == u2 { + if *s1 == s2 { + self.double() // Is the same point + } else { + Self::neutral_element() // P + (-P) = 0 + } + } else { + let h = &u2 - u1; + let hh = h.square(); + let hhh = &h * &hh; + let r = &s2 - s1; + let v = u1 * &hh; + let x3 = r.square() - (&hhh + &v + &v); + let y3 = r * (&v - &x3) - s1 * &hhh; + let z3 = z1 * &h; + + Self::new([x3, y3, z3]) + } + } +} + +impl PartialEq for ShortWeierstrassJacobianPoint { + fn eq(&self, other: &Self) -> bool { + self.0 == other.0 + } +} + +impl Eq for ShortWeierstrassJacobianPoint {} + +impl FromAffine for ShortWeierstrassJacobianPoint { + fn from_affine( + x: FieldElement, + y: FieldElement, + ) -> Result { + if E::defining_equation(&x, &y) != FieldElement::zero() { + Err(EllipticCurveError::InvalidPoint) + } else { + let coordinates = [x, y, FieldElement::one()]; + Ok(ShortWeierstrassJacobianPoint::new(coordinates)) + } + } +} + +impl IsGroup for ShortWeierstrassJacobianPoint { + /// The point at infinity. + fn neutral_element() -> Self { + Self::new([ + FieldElement::one(), + FieldElement::one(), + FieldElement::zero(), + ]) + } + + fn is_neutral_element(&self) -> bool { + let pz = self.z(); + pz == &FieldElement::zero() + } + + /// Computes the addition of `self` and `other`. + /// https://github.com/mratsim/constantine/blob/65147ed815d96fa94a05d307c1d9980877b7d0e8/constantine/math/elliptic/ec_shortweierstrass_jacobian.md + fn operate_with(&self, other: &Self) -> Self { + if self.is_neutral_element() { + return other.clone(); + } + + if other.is_neutral_element() { + return self.clone(); + } + + let [x1, y1, z1] = self.coordinates(); + let [x2, y2, z2] = other.coordinates(); + + let z1_sq = z1.square(); // Z1^2 + let z2_sq = z2.square(); // Z2^2 + + let u1 = x1 * &z2_sq; // U1 = X1 * Z2^2 + let u2 = x2 * &z1_sq; // U2 = X2 * Z1^2 + + let z1_cu = z1 * &z1_sq; // Z1^3 + let z2_cu = z2 * &z2_sq; // Z2^3 + + let s1 = y1 * &z2_cu; // S1 = Y1 * Z2^3 + let s2 = y2 * &z1_cu; // S2 = Y2 * Z1^3 + + if u1 == u2 { + if s1 == s2 { + return self.double(); // P + P = 2P + } else { + return Self::neutral_element(); // P + (-P) = 0 + } + } + // H = U2 - U1 + let h = u2 - &u1; + // I = (2 * H)^2 + let i = h.double().square(); + // J = H * I + let j = -(&h * &i); + + // R = 2 * (S2 - S1) + let r = (s2 - &s1).double(); + + // V = U1 * I + let v = u1 * &i; + + // X3 = R^2 + J - 2 * V + let x3 = r.square() + &j - v.double(); + + // Y3 = R * (V - X3) + 2 * S1 * J + let y3 = r * (v - &x3) + (s1 * &j.double()); + + // Z3 = 2 * Z1 * Z2 * H + let z3 = z1 * z2; + let z3 = z3.double() * h; + + Self::new([x3, y3, z3]) + } + + /// Returns the additive inverse of the jacobian point `p` + fn neg(&self) -> Self { + let [x, y, z] = self.coordinates(); + Self::new([x.clone(), -y, z.clone()]) + } +} + #[cfg(test)] mod tests { use super::*; use crate::elliptic_curve::short_weierstrass::curves::bls12_381::curve::BLS12381Curve; + use crate::elliptic_curve::short_weierstrass::curves::bls12_381::curve::{ + CURVE_COFACTOR, SUBGROUP_ORDER, + }; #[cfg(feature = "alloc")] use crate::{ elliptic_curve::short_weierstrass::curves::bls12_381::field_extension::BLS12381PrimeField, @@ -399,6 +616,28 @@ mod tests { BLS12381Curve::create_point_from_affine(x, y).unwrap() } + #[cfg(feature = "alloc")] + #[test] + fn operate_with_works_jacobian() { + let x = FEE::new_base("36bb494facde72d0da5c770c4b16d9b2d45cfdc27604a25a1a80b020798e5b0dbd4c6d939a8f8820f042a29ce552ee5"); + let y = FEE::new_base("7acf6e49cc000ff53b06ee1d27056734019c0a1edfa16684da41ebb0c56750f73bc1b0eae4c6c241808a5e485af0ba0"); + let p = ShortWeierstrassJacobianPoint::::from_affine(x, y).unwrap(); + + assert_eq!(p.operate_with(&p), p.double()); + } + + #[cfg(feature = "alloc")] + #[test] + fn operate_with_self_works_jacobian() { + let x = FEE::new_base("36bb494facde72d0da5c770c4b16d9b2d45cfdc27604a25a1a80b020798e5b0dbd4c6d939a8f8820f042a29ce552ee5"); + let y = FEE::new_base("7acf6e49cc000ff53b06ee1d27056734019c0a1edfa16684da41ebb0c56750f73bc1b0eae4c6c241808a5e485af0ba0"); + let p = ShortWeierstrassJacobianPoint::::from_affine(x, y).unwrap(); + + assert_eq!( + p.operate_with_self(5_u16), + p.double().double().operate_with(&p) + ); + } #[cfg(feature = "alloc")] #[test] fn byte_conversion_from_and_to_be_projective() { @@ -586,4 +825,63 @@ mod tests { DeserializationError::InvalidAmountOfBytes ); } + + #[test] + fn test_jacobian_vs_projective_operation() { + let x = FEE::new_base("36bb494facde72d0da5c770c4b16d9b2d45cfdc27604a25a1a80b020798e5b0dbd4c6d939a8f8820f042a29ce552ee5"); + let y = FEE::new_base("7acf6e49cc000ff53b06ee1d27056734019c0a1edfa16684da41ebb0c56750f73bc1b0eae4c6c241808a5e485af0ba0"); + + let p = ShortWeierstrassJacobianPoint::::from_affine(x.clone(), y.clone()) + .unwrap(); + let q = ShortWeierstrassProjectivePoint::::from_affine(x, y).unwrap(); + + let sum_jacobian = p.operate_with_self(7_u16); + let sum_projective = q.operate_with_self(7_u16); + + // Convert the result to affine coordinates + let sum_jacobian_affine = sum_jacobian.to_affine(); + let [x_j, y_j, _] = sum_jacobian_affine.coordinates(); + + // Convert the result to affine coordinates + let binding = sum_projective.to_affine(); + let [x_p, y_p, _] = binding.coordinates(); + + assert_eq!(x_j, x_p, "x coordintates do not match"); + assert_eq!(y_j, y_p, "y coordinates do not match"); + } + + #[test] + fn test_multiplication_by_order_projective() { + let x = FEE::new_base("36bb494facde72d0da5c770c4b16d9b2d45cfdc27604a25a1a80b020798e5b0dbd4c6d939a8f8820f042a29ce552ee5"); + let y = FEE::new_base("7acf6e49cc000ff53b06ee1d27056734019c0a1edfa16684da41ebb0c56750f73bc1b0eae4c6c241808a5e485af0ba0"); + + let p = ShortWeierstrassProjectivePoint::::from_affine(x.clone(), y.clone()) + .unwrap(); + + let g = p + .operate_with_self(SUBGROUP_ORDER) + .operate_with_self(CURVE_COFACTOR); + + assert!( + g.is_neutral_element(), + "Multiplication by order should result in the neutral element" + ); + } + + #[test] + fn test_multiplication_by_order_jacobian() { + let x = FEE::new_base("36bb494facde72d0da5c770c4b16d9b2d45cfdc27604a25a1a80b020798e5b0dbd4c6d939a8f8820f042a29ce552ee5"); + let y = FEE::new_base("7acf6e49cc000ff53b06ee1d27056734019c0a1edfa16684da41ebb0c56750f73bc1b0eae4c6c241808a5e485af0ba0"); + + let p = ShortWeierstrassJacobianPoint::::from_affine(x.clone(), y.clone()) + .unwrap(); + let g = p + .operate_with_self(SUBGROUP_ORDER) + .operate_with_self(CURVE_COFACTOR); + + assert!( + g.is_neutral_element(), + "Multiplication by order should result in the neutral element" + ); + } }