diff --git a/math/src/polynomial/mod.rs b/math/src/polynomial/mod.rs index ee27923d0..679a83aec 100644 --- a/math/src/polynomial/mod.rs +++ b/math/src/polynomial/mod.rs @@ -1,8 +1,8 @@ use super::field::element::FieldElement; -use crate::field::traits::{IsField, IsSubFieldOf}; -use alloc::{borrow::ToOwned, vec, vec::Vec}; +use crate::field::traits::{IsField, IsPrimeField, IsSubFieldOf}; +use alloc::string::{String, ToString}; +use alloc::{borrow::ToOwned, format, vec, vec::Vec}; use core::{fmt::Display, ops}; - pub mod dense_multilinear_poly; mod error; pub mod sparse_multilinear_poly; @@ -140,6 +140,19 @@ impl Polynomial> { self.coefficients().len() } + /// Returns the derivative of the polynomial with respect to x. + pub fn differentiate(&self) -> Self { + let degree = self.degree(); + if degree == 0 { + return Polynomial::zero(); + } + let mut derivative = Vec::with_capacity(degree); + for (i, coeff) in self.coefficients().iter().enumerate().skip(1) { + derivative.push(FieldElement::::from(i as u64) * coeff); + } + Polynomial::new(&derivative) + } + /// Computes quotient with `x - b` in place. pub fn ruffini_division_inplace(&mut self, b: &FieldElement) { let mut c = FieldElement::zero(); @@ -302,6 +315,44 @@ impl Polynomial> { } } +impl Polynomial> { + // Print the polynomial as a string ready to be used in SageMath, or just for pretty printing. + pub fn print_as_sage_poly(&self, var_name: Option) -> String { + let var_name = var_name.unwrap_or('x'); + if self.coefficients.is_empty() + || self.coefficients.len() == 1 && self.coefficients[0] == FieldElement::zero() + { + return String::new(); + } + + let mut string = String::new(); + let zero = FieldElement::::zero(); + + for (i, coeff) in self.coefficients.iter().rev().enumerate() { + if *coeff == zero { + continue; + } + + let coeff_str = coeff.representative().to_string(); + + if i == self.coefficients.len() - 1 { + string.push_str(&coeff_str); + } else if i == self.coefficients.len() - 2 { + string.push_str(&format!("{}*{} + ", coeff_str, var_name)); + } else { + string.push_str(&format!( + "{}*{}^{} + ", + coeff_str, + var_name, + self.coefficients.len() - 1 - i + )); + } + } + + string + } +} + pub fn pad_with_zero_coefficients_to_length( pa: &mut Polynomial>, n: usize, @@ -1177,4 +1228,25 @@ mod tests { assert_eq!(lhs, g); assert_eq!(g, p3); } + + #[test] + fn test_differentiate() { + // 3x^2 + 2x + 42 + let px = Polynomial::new(&[FE::new(42), FE::new(2), FE::new(3)]); + // 6x + 2 + let dpdx = px.differentiate(); + assert_eq!(dpdx, Polynomial::new(&[FE::new(2), FE::new(6)])); + + // 128 + let px = Polynomial::new(&[FE::new(128)]); + // 0 + let dpdx = px.differentiate(); + assert_eq!(dpdx, Polynomial::new(&[FE::new(0)])); + } + + #[test] + fn test_print_as_sage_poly() { + let p = Polynomial::new(&[FE::new(1), FE::new(2), FE::new(3)]); + assert_eq!(p.print_as_sage_poly(None), "3*x^2 + 2*x + 1"); + } }