-
Notifications
You must be signed in to change notification settings - Fork 8
/
main_ddp.py
175 lines (147 loc) · 5.93 KB
/
main_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--trainbs', default=128, type=int, help='trainloader batch size')
parser.add_argument('--testbs', default=100, type=int, help='testloader batch size')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
args = parser.parse_args()
ngpus = torch.cuda.device_count()
cuda = torch.cuda.is_available()
# initialize PyTorch distributed using environment variables
# (you could also do this more explicitly by specifying `rank` and `world_size`,
# but I find using environment variables makes it so that you can easily use the same script on different machines)
dist.init_process_group(backend='nccl', init_method='env://')
torch.cuda.set_device(args.local_rank)
device = torch.device('cuda', args.local_rank)
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
if args.local_rank == 0:
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
sampler = DistributedSampler(trainset)
trainloader = torch.utils.data.DataLoader(trainset, sampler=sampler, batch_size=args.trainbs, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.testbs, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
if args.local_rank == 0:
print('==> Building model..')
# net = VGG('VGG16')
net = ResNet50()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = ResNeXt29_32x4d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
net_name = net.name
save_path = './checkpoint/{0}_ckpt.pth'.format(net.name)
if args.resume:
# Load best checkpoint trained last time.
if args.local_rank == 0:
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(save_path)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
net = net.to(device)
net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
if ngpus > 1:
net = DDP(net, device_ids=[args.local_rank], output_device=args.local_rank)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=70, gamma=0.1)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if args.local_rank == 0:
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if args.local_rank == 0:
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
if args.local_rank == 0:
print('Saving ' + net_name + ' ..')
state = {
'net': net.module.state_dict() if ngpus>1 else net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, save_path)
best_acc = acc
for epoch in range(start_epoch, start_epoch+300):
# In PyTorch 1.1.0 and later,
# you should call them in the opposite order:
# `optimizer.step()` before `lr_scheduler.step()`
sampler.set_epoch(epoch)
train(epoch)
test(epoch)
scheduler.step() # 每隔100 steps学习率乘以0.1
print("\nTesting best accuracy:", best_acc)