-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
138 lines (126 loc) · 5.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import json
import logging
import os
import time
from argparse import ArgumentParser
from datetime import datetime
from pgportfolio.tools.configprocess import preprocess_config
from pgportfolio.tools.configprocess import load_config
from pgportfolio.tools.trade import save_test_data
from pgportfolio.tools.shortcut import execute_backtest
from pgportfolio.resultprocess import plot
def build_parser():
parser = ArgumentParser()
parser.add_argument("--mode",dest="mode",
help="start mode, train, generate, download_data"
" backtest",
metavar="MODE", default="train")
parser.add_argument("--processes", dest="processes",
help="number of processes you want to start to train the network",
default="1")
parser.add_argument("--repeat", dest="repeat",
help="repeat times of generating training subfolder",
default="1")
parser.add_argument("--algo",
help="algo name or indexes of training_package ",
dest="algo")
parser.add_argument("--algos",
help="algo names or indexes of training_package, seperated by \",\"",
dest="algos")
parser.add_argument("--labels", dest="labels",
help="names that will shown in the figure caption or table header")
parser.add_argument("--format", dest="format", default="raw",
help="format of the table printed")
parser.add_argument("--device", dest="device", default="gpu",
help="device to be used to train")
parser.add_argument("--folder", dest="folder", type=int,
help="folder(int) to load the config, neglect this option if loading from ./pgportfolio/net_config")
return parser
def main():
parser = build_parser()
options = parser.parse_args()
if not os.path.exists("./" + "train_package"):
os.makedirs("./" + "train_package")
if not os.path.exists("./" + "database"):
os.makedirs("./" + "database")
if options.mode == "train":
import pgportfolio.autotrain.training
if not options.algo:
pgportfolio.autotrain.training.train_all(int(options.processes), options.device) # train all agents
else:
for folder in options.train_floder:
raise NotImplementedError()
elif options.mode == "generate":
import pgportfolio.autotrain.generate as generate
logging.basicConfig(level=logging.INFO)
generate.add_packages(load_config(), int(options.repeat))
elif options.mode == "download_data":
from pgportfolio.marketdata.datamatrices import DataMatrices
with open("./pgportfolio/net_config.json") as file:
config = json.load(file)
config = preprocess_config(config) # preprocess the configuration
start = time.mktime(datetime.strptime(config["input"]["start_date"], "%Y/%m/%d").timetuple())
end = time.mktime(datetime.strptime(config["input"]["end_date"], "%Y/%m/%d").timetuple())
DataMatrices(start=start,
end=end,
feature_number=config["input"]["feature_number"],
window_size=config["input"]["window_size"],
online=True,
period=config["input"]["global_period"],
volume_average_days=config["input"]["volume_average_days"],
coin_filter=config["input"]["coin_number"],
is_permed=config["input"]["is_permed"],
test_portion=config["input"]["test_portion"],
portion_reversed=config["input"]["portion_reversed"])
# download the data
elif options.mode == "backtest":
config = _config_by_algo(options.algo)
_set_logging_by_algo(logging.DEBUG, logging.DEBUG, options.algo, "backtestlog")
execute_backtest(options.algo, config)
elif options.mode == "save_test_data":
# This is used to export the test data
save_test_data(load_config(options.folder))
elif options.mode == "plot":
logging.basicConfig(level=logging.INFO)
algos = options.algos.split(",")
if options.labels:
labels = options.labels.replace("_"," ")
labels = labels.split(",")
else:
labels = algos
plot.plot_backtest(load_config(), algos, labels)
elif options.mode == "table":
algos = options.algos.split(",")
if options.labels:
labels = options.labels.replace("_"," ")
labels = labels.split(",")
else:
labels = algos
plot.table_backtest(load_config(), algos, labels, format=options.format)
def _set_logging_by_algo(console_level, file_level, algo, name):
# set logging information
if algo.isdigit():
logging.basicConfig(filename="./train_package/"+algo+"/"+name,
level=file_level)
console = logging.StreamHandler()
console.setLevel(console_level)
logging.getLogger().addHandler(console)
else:
logging.basicConfig(level=console_level)
def _config_by_algo(algo):
"""
:param algo: a string represent index or algo name
:return : a config dictionary
"""
if not algo:
raise ValueError("please input a specific algo")
elif algo.isdigit():
config = load_config(algo)
else:
config = load_config()
return config
if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES']='5'
main()