-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmyredbluecmap.m
113 lines (107 loc) · 3.16 KB
/
myredbluecmap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
function p = myredbluecmap(m,varargin)
%MYREDBLUECMAP creates a red and green colormap.
%
% MYREDBLUECMAP(M) returns an M-by-3 matrix containing a red and green
% colormap. Low values are bright green, values in the center of the map
% are black, and high values are red. If M is empty, the length of the
% map will be the same as the length of the colormap of the current figure.
%
% MYREDBLUECMAP(...,'INTERPOLATION',METHOD) allows you to set how the
% colors are interpolated. Valid options are 'linear', 'quadratic',
% 'cubic', and 'sigmoid'. Default is 'linear'.
%
% MYREDBLUECMAP, by itself, is the same length as the current colormap.
%
% For example, to reset the colormap of the current figure, type
%
% colormap(myredbluecmap)
%
% % Use linear interpolation from red to black to green
% colormap(myredbluecmap([],'interpolation','linear'))
%
% See also CLUSTERGRAM, COLORMAP, COLORMAPEDITOR.
% Copyright 2003-2006 The MathWorks, Inc.
maxncolors_redblue = 11;
if nargin < 1 || isempty(m)
m = size(get(gcf,'colormap'),1);
end
if m <= maxncolors_redblue,
p = redbluecmap(m,varargin{:});
return;
end
p0 = redbluecmap(maxncolors_redblue);
p = nan(m,3);
for i = 1:3,
p(:,i) = interp1(linspace(0,1,maxncolors_redblue)',p0(:,i),linspace(0,1,m)');
end
%
% coloredLength = floor((m-1)/2);
%
% % deal with small inputs in a consistent way
% if m < 3
% if m == 0
% p = zeros(0,3);
% elseif m == 1
% p = zeros(1,3);
% else
% p = [0 0 1; 1 0 0];
% end
% return
% end
%
% interpMethod = 'linear';
% % get input arguments
% if nargin > 1
% if rem(nargin,2) ~= 1
% error(message('fastaread:IncorrectNumberOfArguments', mfilename));
% end
% okargs = {'interpolation',''};
% for j=1:2:nargin-1
% pname = varargin{j};
% pval = varargin{j+1};
% k = find(strncmpi(pname,okargs,numel(pname)));
% if isempty(k)
% error(message('fastaread:UnknownParameterName', pname));
% else
% switch(k)
% case 1 % ignore gaps
% interpMethod = pval;
% end
% end
% end
% end
%
% % create an appropriately long linearly interpolated chunk
% interpCol = (1/(coloredLength):1/(coloredLength):1);
%
% okmethods = {'sigmoid','linear','quadratic','cubic'};
% theMethod = find(strncmpi(interpMethod,okmethods,numel(interpMethod)));
% if numel(theMethod) ~= 1
% error(message('myredbluecmap:InvalidMethod', interpMethod));
% else
% switch(theMethod)
% case 1 %tanh
% interpCol = tanh(pi*(interpCol));
% case 2 % linear
% % Don't need to do anything
% case 3 %quadratic
% interpCol = (interpCol).^(1/2);
% case 4 %cubic
% interpCol = (interpCol).^(1/3);
% end
% end
%
% if coloredLength == ((m-1)/2)
% fillerZeros = 0;
% else
% fillerZeros = [0 0];
% end
%
% % red is linear for red half
% red = fliplr(1-[zeros(size(interpCol)) fillerZeros interpCol]);
% % blue is opposite of red
% blue = fliplr(red);
% % green is lowintensity for red half
% green = min(red,blue);
%
% p = [red',green',blue'];