-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckingFitMMUsingCV.R
118 lines (85 loc) · 4.48 KB
/
checkingFitMMUsingCV.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# OLD checking code (from GMM testing)
plotCVLogLikelihoodVsNumMixtureComponents(path="~/Desktop/op3-cv-loglik-large", mixtureComponentsRange=c(seq(from=2,by=1,to=7),100))
load("~/Desktop/ops.RData")
kFoldCVToChooseNumMixtureComponentsForGMM(dataVector=op1$latency_ms, mixtureComponentsRange=seq(from=2,by=1,to=15), destinationPath="~/Desktop/op1-cv")
plotCVLogLikelihoodVsNumMixtureComponents(path="~/Desktop/op1-cv", mixtureComponentsRange=seq(from=2,by=1,to=15))
#for (i in c(2,seq(from=4,by=1,to=9))) {
for (i in c(7,8,9)) {
if (i == 2) {
op = op2
} else if (i == 4) {
op = op4
} else if (i == 5) {
op = op5
} else if (i == 6) {
op = op6
} else if (i == 7) {
op = op7
} else if (i == 8) {
op = op8
} else if (i == 9) {
op = op9
} else {
op = 0
}
kFoldCVToChooseNumMixtureComponentsForGMM(dataVector=op$latency_ms, mixtureComponentsRange=seq(from=2,by=1,to=15), destinationPath=paste("~/Desktop/op", i, "-cv", sep=""))
plotCVLogLikelihoodVsNumMixtureComponents(path=paste("~/Desktop/op", i, "-cv", sep=""), mixtureComponentsRange=seq(from=2,by=1,to=15))
}
# On EC2
load("ops.RData")
op=op9
i=9
path="~/Desktop"
kFoldCVToChooseNumMixtureComponentsForGMM(dataVector=op$latency_ms, mixtureComponentsRange=seq(from=2,by=1,to=15), destinationPath=paste(path, "/op", i, "-cv", sep=""))
plotCVLogLikelihoodVsNumMixtureComponents(path=paste(path, "/op", i, "-cv", sep=""), mixtureComponentsRange=2)
load("~/Desktop/op6-cv/cvLogLikelihood-2mixtureComponents.RData")
ls()
logLikelihood
## 8.3.10
# Checking CV for fitting MM to data
source("fitGeneralMMUsingCV.R")
# checking "splitDataIntoKFolds"
data=sample(10,30,replace=TRUE)
foldAssignmentVector=splitDataIntoKFolds(data, 4)
length(which(foldAssignmentVector==1))
length(which(foldAssignmentVector==2))
length(which(foldAssignmentVector==3))
length(which(foldAssignmentVector==4))
# checking "fitMMToTrainingDataAndReturnValidationLikelihood"
loglik=fitMMToTrainingDataAndReturnValidationLikelihood(data, c(1,4,5,6,9), 3, "normal", "evenlySpacedByQuantile")
loglik
# checking "findAvgLogLikelihoodViaCVFixedNumMixtureComponents"
loglik= findAvgLogLikelihoodViaCVFixedNumMixtureComponents(data, 3, 3, "normal", "evenlySpacedByQuantile")
# checking "kFoldCVToChooseNumMixtureComponentsForMM"
numMixtures = kFoldCVToChooseNumMixtureComponentsForMM(data, "normal", "evenlySpacedByQuantile", "~/Desktop/testDir")
# now try for real
kFoldCVToChooseNumMixtureComponentsForMM(op3$latency_ms, "gamma", "evenlySpacedByQuantile", "~/Desktop/op3Gamma")
# try on R cluster
dataPath="/work/ksauer/8.3.10-cv"
load(paste(dataPath, "/ops.RData", sep=""))
setwd("/work/ksauer/scads/experiments/client/performance/logparsing/src/main/R")
source("fitGeneralMMUsingCV.R")
op=op5
opNum=5
kFoldCVToChooseNumMixtureComponentsForMM(op$latency_ms, "normal", "evenlySpacedByQuantile", paste(dataPath, "/op", opNum, "Normal", sep=""))
kFoldCVToChooseNumMixtureComponentsForMM(op$latency_ms, "exponential", "evenlySpacedByQuantile", paste(dataPath, "/op", opNum, "Exponential", sep=""))
kFoldCVToChooseNumMixtureComponentsForMM(op$latency_ms, "gamma", "evenlySpacedByQuantile", paste(dataPath, "/op", opNum, "Gamma", sep=""))
kFoldCVToChooseNumMixtureComponentsForMM(op$latency_ms, "weibull", "evenlySpacedByQuantile", paste(dataPath, "/op", opNum, "Weibull", sep=""))
# try to plot
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Normal", sep=""))
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Exponential", sep=""), mixtureComponentsRange=seq(from=2, to=9, by=1))
# make all plots
maxMixtures = matrix(nrow=5, ncol=4)
rownames(maxMixtures)=c("op1", "op2", "op3", "op4", "op5")
colnames(maxMixtures)=c("normal", "exponential", "gamma", "weibull")
maxMixtures[1,] = c(9,9,7,9)
maxMixtures[2,] = c(9,6,9,9)
maxMixtures[3,] = c(9,9,9,9)
maxMixtures[4,] = c(9,8,9,9)
maxMixtures[5,] = c(9,9,9,9)
for (opNum in 1:5) {
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Normal", sep=""), mixtureComponentsRange=seq(from=2, to=maxMixtures[opNum,1], by=1))
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Exponential", sep=""), mixtureComponentsRange=seq(from=2, to=maxMixtures[opNum,2], by=1))
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Gamma", sep=""), mixtureComponentsRange=seq(from=2, to=maxMixtures[opNum,3], by=1))
plotCVLogLikelihoodVsNumMixtureComponents(paste(dataPath, "/op", opNum, "Weibull", sep=""), mixtureComponentsRange=seq(from=2, to=maxMixtures[opNum,4], by=1))
}