forked from mitdbg/fastdeepnets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variance_metric.py
239 lines (211 loc) · 9.08 KB
/
variance_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
from torch import nn
from torch.autograd import Variable
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST, FashionMNIST
from torchvision import transforms
from sklearn.model_selection import train_test_split
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import scipy
from algorithms.exp_norm_mixture_fit import fit as fit_exp_norm
from algorithms.digamma_mixture_fit import fit as fit_digamma
from models.MNIST_1h import MNIST_1h
REPLICATES = 11
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
wrap = lambda x: x.cuda(async=True) if torch.is_tensor(x) and x.is_pinned() else x.cuda()
unwrap = lambda x: x.cpu()
def init_models(count=REPLICATES):
return [wrap(MNIST_1h(int(2**(i / 2)))) for i in range(8, 28) for _ in range(count)]
def save_model(model, id):
with open('/tmp/model-%s.data' % id, 'wb+') as f:
torch.save(model, f)
def load_model(id):
with open('/tmp/model-%s.data' % id, 'rb') as f:
return torch.load(f)
def train(models, dl, epochs=30):
criterion = nn.CrossEntropyLoss()
optimizers = [Adam(model.parameters()) for model in models]
for e in range(0, epochs):
print("Epoch %s" % e)
for i, (images, labels) in enumerate(dl):
# print(round(i / len(dl) * 100))
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
for model, optimizer in zip(models, optimizers):
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# There is DEFINITELY a better online batched estimator for the variance
# But this one is quite efficient and quite stable (no square of sums)
# I will improve it for sure when I have more time
# At least this is good enough to get me started
def get_activations(models, loader, wrap=wrap):
count = 0
sums = [wrap(torch.zeros(m.hidden_layer.out_features)) for m in models]
sums_diff = [wrap(torch.zeros(m.hidden_layer.out_features)) for m in models]
for images, labels in loader:
images = wrap(Variable(images, volatile=True))
bs = images.size(0)
count += bs
for i, model in enumerate(models):
b = model.partial_forward(images).data
sums[i] += b.sum(0)
running_mean = sums[i] / count
diff = b - running_mean.unsqueeze(0).expand(bs, sums_diff[i].size()[0])
sums_diff[i] += (diff * diff).sum(0)
return [torch.sqrt(x / count).cpu().numpy() for x in sums_diff]
def plot_distributions(activations, prefix):
to_plot = [1, 3, 5, 9, 11, 13, 15]
plt.figure(figsize=(10, 5))
for i in reversed(sorted(to_plot)):
sns.distplot(activations[i], hist=False, label="%s neurons" % (len(activations[i]) / REPLICATES ))
plt.xlim((0, 8.5))
plt.xlabel('Standard deviation (unitless)')
plt.ylabel('Density')
plt.title(prefix +' - Distribution of standard deviation of activation after hidden layer')
plt.legend()
plt.tight_layout()
plt.savefig('./plots/%s_1h_dist_activations.png' % prefix)
plt.close()
def plot_sum_variance(activations, prefix):
sizes = np.array([len(x) / REPLICATES for x in activations])
sums = np.array([x.sum() for x in activations])
plt.figure(figsize=(10, 5))
plt.plot(sizes, sums)
plt.title(prefix +' - Sum of variance depending on the size of the layer')
plt.xlabel('Number of neurons')
plt.ylabel('Sum of variance')
plt.tight_layout()
plt.savefig('./plots/%s_1h_sum_variance.png' % prefix)
plt.close()
def plot_shapiro(activations, prefix):
sizes = np.array([len(x) / REPLICATES for x in activations])
t_values = np.array([scipy.stats.shapiro(x)[0] for x in activations])
plt.figure(figsize=(10, 5))
plt.plot(sizes, t_values)
plt.title(prefix +' - Results of normality tests(Shapiro) for different layer size')
plt.xlabel('Number of neurons')
plt.ylabel('t_value')
argmax = sizes[t_values.argmax()]
plt.axvline(x=argmax, color='C1')
plt.xticks(list(plt.xticks()[0]) + [argmax])
plt.xlim(0, 10000)
plt.ylim((0, 1))
plt.tight_layout()
plt.savefig('./plots/%s_1h_normality_test.png' % prefix)
plt.close()
def plot_distributions_around_sweet(activations, prefix):
t_values = np.array([scipy.stats.shapiro(x)[0] for x in activations])
argmax = t_values.argmax()
to_plot = [argmax - 1, argmax, argmax + 1]
plt.figure(figsize=(10, 5))
for i in reversed(sorted(to_plot)):
sns.distplot(activations[i], hist=False, label="%s neurons" % (len(activations[i]) / REPLICATES))
plt.xlim((0, 5))
plt.ylim((0, 0.5))
plt.xlabel('Standard deviation (unitless)')
plt.ylabel('Density')
plt.title(prefix +' - Distribution of standard deviation of activation after hidden layer around the most normal')
plt.legend()
plt.tight_layout()
plt.savefig('./plots/%s_1h_dist_activations_around_sweet.png' % prefix)
plt.close()
def plot_dead_neurons(activations, prefix):
sizes = np.array([len(x) / REPLICATES for x in activations])
deads = np.array([(x == 0).sum() for x in activations])
plt.figure(figsize=(10, 5))
plt.plot(sizes, deads)
plt.title(prefix +' - Evolution of the quantity of dead neurons')
plt.xlabel('Number of neurons')
plt.ylabel('Number of dead neurons')
plt.tight_layout()
plt.savefig('./plots/%s_1h_dead_neurons.png' % prefix)
plt.close()
def get_accuracy(models, loader):
models = [wrap(model) for model in models]
accs = [0] * len(models)
for images, labels in loader:
images = wrap(Variable(images, volatile=True))
labels = wrap(labels)
for i, model in enumerate(models):
predicted = model(images).data
acc = (predicted.max(1)[1] == labels).float().mean()
accs[i] += acc
return np.array(accs) / len(loader)
def plot_compare_shapiro_accuracy(activations, accuracies, prefix):
sizes = np.array([len(x) / REPLICATES for x in activations])
t_values = np.array([scipy.stats.shapiro(x)[0] for x in activations])
plt.figure(figsize=(10, 5))
a = plt.gca()
b = a.twinx()
a.plot(sizes, t_values, color='C0')
b.plot(sizes, accuracies, color='C1')
a.set_ylabel('t_value (shapiro test)')
b.set_ylabel('accuracy')
plt.xscale('log', basex=2)
a.set_xlabel('Number of neurons')
plt.title(prefix +' - Comparison between normality test and measured accuracy')
plt.tight_layout()
plt.savefig('./plots/%s_1h_acc_vs_shapiro.png' % prefix)
plt.close()
def plot_mixture_ratio(activations, accuracies, prefix):
n_acc = (accuracies - accuracies.min()) / (accuracies.max() - accuracies.min())
z_activations = [(a == 0).sum() / REPLICATES for a in activations]
nz_activations = [a[a != 0] for a in activations]
sizes = np.array([len(x) / REPLICATES for x in activations])
digamma_ratio = np.array([fit_digamma(x)[1] for x in nz_activations])
exp_norm_ratio = np.array([fit_exp_norm(x)[1] for x in nz_activations])
t_values = np.array([scipy.stats.shapiro(x)[0] for x in nz_activations])
plt.figure(figsize=(10, 5))
a = plt.gca()
b = a.twinx()
a.plot(sizes, digamma_ratio, color='C0', label='Digamma fitting')
a.plot(sizes, exp_norm_ratio, color='C1', label='Exp+Normal fitting')
a.plot(sizes, t_values, color='C2', label='Shapiro normality test')
a.plot(sizes, n_acc, color='C4', label='Normalized accuracy')
a.axhline(y = 0.025, color='C5', label='Arbitrary suggested threshold (p=0.05)')
a.legend(loc='lower right')
b.plot(sizes, z_activations, color='C3', label='Dead neurons')
a.set_ylabel('Proportions')
b.set_ylabel('Number of dead neurons')
b.legend(loc='upper right')
plt.xscale('log', basex=2)
b.set_ylim((0, 20))
a.set_xlabel('Number of neurons')
plt.title(prefix +' - Comparison between multiple metrics')
plt.savefig('./plots/%s_1h_acc_vs_mixtures.png' % prefix)
plt.close()
def benchmark(dataset, prefix):
dl = DataLoader(
dataset(
'./datasets/%s/' % prefix,
train=True,
download=True,
transform=transform),
batch_size=128,
pin_memory=True,
shuffle=True
)
models = init_models()
train(models, dl)
activations = np.array(get_activations(models, dl)).reshape(-1, REPLICATES)
activations = [np.concatenate(a) for a in activations]
accuracies = get_accuracy(models, dl).reshape(-1, REPLICATES).mean(axis=1)
plot_distributions(activations, prefix)
plot_shapiro(activations, prefix)
plot_sum_variance(activations, prefix)
plot_distributions_around_sweet(activations, prefix)
plot_dead_neurons(activations, prefix)
plot_compare_shapiro_accuracy(activations, accuracies, prefix)
plot_mixture_ratio(activations, accuracies, prefix)
if __name__ == '__main__':
benchmark(MNIST, 'MNIST')
benchmark(FashionMNIST, 'FashionMNIST')