forked from mitdbg/fastdeepnets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_sparsifier.py
306 lines (289 loc) · 12.1 KB
/
simple_sparsifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import copy
from torch.optim import Adam
from torch.nn import CrossEntropyLoss
from torch.autograd import Variable
from torchvision.datasets import MNIST, FashionMNIST
from collections import defaultdict
from io import BytesIO
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from models.MNIST_1h_sparsifier import MNIST_1h_sparsifier
from utils.wrapping import wrap, unwrap
from utils.MNIST import get_dl
from utils.misc import tn
EPOCHS = 15
def train(models, dl, dl2, lamb=0.001, epochs=EPOCHS, l2_penalty=0.01, pre_out=None):
try:
lamb[len(models) - 1]
except TypeError:
lamb = [lamb] * len(models)
criterion = CrossEntropyLoss()
optimizers = []
for model in models:
optimizer = Adam([{
'params': model.parameters(),
'weight_decay': l2_penalty,
}])
optimizers.append(optimizer)
sizes = []
losses = []
taccuracies = []
accuracies = []
stopped = [False] * len(models)
best = [np.inf] * len(models)
for e in range(0, epochs):
print("Epoch %s" % e)
gradient = np.zeros(len(models))
los = np.zeros(len(models))
accs = np.zeros(len(models))
taccs = np.zeros(len(models))
for i, (images, labels) in enumerate(dl):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
for mid, (model, optimizer) in enumerate(zip(models, optimizers)):
output = model(images)
if pre_out is not None:
output += Variable(pre_out(images).data, requires_grad=False)
optimizer.zero_grad()
l = criterion(output, labels)
l2 = l + float(lamb[mid]) * model.loss()
l2.backward()
acc = (output.max(1)[1] == labels).float().sum()
los[mid] += tn(l.data) # Save the loss without the penalty
accs[mid] += tn(acc.data)
optimizer.step()
for i, (images, labels) in enumerate(dl2):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
for mid, (model, optimizer) in enumerate(zip(models, optimizers)):
output = model(images)
if pre_out is not None:
output += Variable(pre_out(images).data, requires_grad=False)
acc = (output.max(1)[1] == labels).float().sum()
taccs[mid] += tn(acc.data)
losses.append(los)
accuracies.append(accs)
taccuracies.append(taccs)
sizes.append([tn(m.l0_loss().data) for m in models])
total_samples = len(dl.dataset)
total_samples2 = len(dl2.dataset)
return np.stack(sizes), np.stack(losses) / total_samples, np.stack(accuracies) / total_samples, np.stack(taccuracies) / total_samples2
def evaluate_neuron_importance(model, dl):
def eval_loss():
total_loss = 0
criterion = CrossEntropyLoss()
for images, labels in dl:
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
output = model(images)
total_loss += tn(criterion(output, labels).data)
return total_loss
current_loss = eval_loss()
loss_differences = defaultdict(int)
for i, value in enumerate(model.filter.data.cpu().numpy().tolist()):
model.filter.data.index_fill_(0, (torch.ones(1) * i).long().cuda(), 0)
loss_differences[i] = current_loss - eval_loss()
model.filter.data.index_fill_(0, (torch.ones(1) * i).long().cuda(), value)
return loss_differences
def plot_training(lambdas, training_accuracy, testing_accuracy, sizes, prefix, epochs):
order = np.argsort(lambdas)
fig, (a, b) = plt.subplots(1, 2)
fig.suptitle("Training process with different penalties", fontsize=14)
b.set_xlabel('Epoch')
a.set_xlabel('Epoch')
a.set_ylabel('Accuracy (%)')
b.set_ylabel('Network Size')
a.minorticks_on()
a.yaxis.set_minor_locator(MultipleLocator(1))
a.yaxis.set_major_locator(MultipleLocator(5))
a.yaxis.grid(b=True, which='major', linestyle='-')
a.yaxis.grid(b=True, which='minor', alpha=0.4, linestyle='--')
b.yaxis.set_minor_locator(MultipleLocator(10))
b.yaxis.set_major_locator(MultipleLocator(100))
b.yaxis.grid(b=True, which='major', linestyle='-')
b.yaxis.grid(b=True, which='minor', alpha=0.4, linestyle='--')
b.minorticks_on()
a.set_xlim(xmin=0, xmax=epochs-1)
b.set_xlim(xmin=0, xmax=epochs-1)
fig.set_size_inches((10, 5))
for index in order:
c = 'C%s'%index
a.plot(testing_accuracy[index]*100, color=c, linewidth=3)
a.plot(training_accuracy[index]*100, color=c, linestyle=':', linewidth=3)
b.plot(sizes[index], color=c, linewidth=3, label='%s penalty' % lambdas[index])
b.legend(loc='center right')
training_artist = plt.Line2D((0,1),(0,0), color='k', linestyle=':')
testing_artist = plt.Line2D((0,1),(0,0), color='k', linestyle='-')
a.legend([training_artist, testing_artist], ['Training', 'Testing'])
plt.savefig('./plots/%s_1h_training_strict_sparsifier.png' % prefix)
plt.close()
def plot_end(lambdas, training_accuracy, testing_accuracy, sizes, prefix, epochs):
final_training_acc = training_accuracy[:, -1]
final_testing_acc = testing_accuracy[:, -1]
final_sizes = sizes[:, -1]
bar_indices = [len(lambdas) - 1] + list(range(len(lambdas) - 1))
plt.figure(figsize=(10, 5))
a = plt.gca()
a.bar(bar_indices, 100 * final_training_acc, 0.65, color='C0', alpha=0.6, label='Training accuracy')
a.bar(bar_indices, 100 * final_testing_acc, 0.85, color='C2', label='Testing accuracy')
a.minorticks_on()
labels_text = list(map(str, lambdas))
labels_text = labels_text[1:] + labels_text[:1]
plt.xticks(np.arange(len(lambdas)), labels_text)
a.yaxis.set_minor_locator(MultipleLocator(1))
a.yaxis.set_major_locator(MultipleLocator(5))
a.yaxis.grid(b=True, which='major', linestyle='-')
a.yaxis.grid(b=True, which='minor', alpha=0.4, linestyle='--')
a.set_ylabel('Accuracy (%)')
a.set_xlabel('Size penalty')
a.set_axisbelow(True)
plt.title('%s - Statistics after training %s epochs' % (prefix, epochs))
b = a.twinx()
b.set_ylim(ymin=0, ymax=final_sizes.max()* 1.1)
a.set_ylim(ymin=0, ymax=100)
b.set_ylabel('Number of neurons used')
order = np.argsort(bar_indices)
b.plot(np.array(bar_indices)[order], final_sizes[order], color='C1', linewidth=4, marker='o', markerfacecolor='black', markersize=10, mew=2)
a.legend(loc='lower right')
plt.tight_layout()
plt.savefig('./plots/%s_1h_stats_strict_sparsifier.png' % prefix)
plt.close()
return final_training_acc
def simple_train(model, dl, dl2, lamb=0.001, pre_out=None):
print(lamb)
total_samples = len(dl.dataset)
total_samples2 = len(dl2.dataset)
criterion = CrossEntropyLoss()
optimizer = Adam(model.parameters())
sizes = []
losses = []
taccuracies = []
accuracies = []
best = (-np.inf, -np.inf)
bn = None
patience = 1
def go(images):
output = model(images)
if pre_out is not None:
output += Variable(pre_out(images).data, requires_grad=False)
return output
while True:
print('epoch')
los = 0
accs = 0
taccs = 0
for i, (images, labels) in enumerate(dl):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
output = go(images)
optimizer.zero_grad()
l = criterion(output, labels)
l2 = l + float(lamb) * model.loss()
l2.backward()
accs += tn((output.max(1)[1] == labels).float().sum().data)
los += tn(l.data) # Save the loss without the penalty
optimizer.step()
for i, (images, labels) in enumerate(dl2):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
output = go(images)
taccs += tn((output.max(1)[1] == labels).float().sum().data)
losses.append(los)
accuracies.append(accs)
taccuracies.append(taccs / total_samples2)
sizes.append(tn(model.l0_loss().data))
next_score = (-sizes[-1], taccuracies[-1])
if best < next_score:
best = next_score
bm = copy.deepcopy(model)
patience = 1
else:
patience += 1
if patience >= 3:
break
return bm, best[1], np.stack(sizes), np.stack(losses) / total_samples, np.stack(accuracies) / total_samples, np.stack(taccuracies)
def train_algo(model_gen, ds, l=1, size=50, f=10):
models = []
dl1 = get_dl(ds, True)
dl2 = get_dl(ds, False)
gbs = 0
l *= f
def preout(x):
values = [m(x) for m in models]
return sum(values[1:], values[0])
while l > 1e-9:
l /= f
model = model_gen()
pr = preout if len(models) > 0 else None
bm, bs, sizes, losses, accs, taccs = simple_train(model, dl1, dl2, lamb=l, pre_out=pr)
if sizes[-1] == 0 or bs < gbs:
continue
else:
print('temp - best score', bs)
while True:
l *= f
cm, cs, ss, ll, aa, taa = simple_train(bm, dl1, dl2, lamb=l, pre_out=pr)
if cs < bs:
break
else:
bm = cm
bs = cs
print('temp - best score', bs)
print('block score')
if bs > gbs:
models.append(bm)
print('current size', sum([tn(m.l0_loss().data) for m in models]))
gbs = bs
else:
return models
return models
def plot_pareto(sizes, accs, prefix):
plt.figure(figsize=(5, 5))
plt.plot(sizes, accs * 100, color='C1', linewidth=4, marker='o', markerfacecolor='black', markersize=10, mew=2)
plt.ylabel('accuracy (%)')
plt.xlabel('Size of the netowrk')
plt.minorticks_on()
plt.title('%s - Accuracy for different sizes' % prefix)
a = plt.gca()
a.yaxis.set_minor_locator(MultipleLocator(0.1))
a.yaxis.set_major_locator(MultipleLocator(1))
a.yaxis.grid(b=True, which='major', linestyle='-')
a.yaxis.grid(b=True, which='minor', alpha=0.4, linestyle='--')
a.xaxis.grid(b=True, which='major', linestyle='-')
a.xaxis.grid(b=True, which='minor', alpha=0.4, linestyle='--')
plt.tight_layout()
plt.savefig('./plots/%s_1h_sparse_pareto.png' % prefix)
plt.close()
def gen_pareto(models, ds):
dl = get_dl(ds, False)
accs = []
for i, (images, labels) in enumerate(dl):
images = wrap(Variable(images, requires_grad=False))
labels = wrap(Variable(labels, requires_grad=False))
labels = labels.unsqueeze(0).expand(len(models), labels.size(0))
outputs = torch.cumsum(torch.stack([m(images) for m in models]), 0)
predictions = outputs.max(2)[1]
accs.append((labels == predictions).float().mean(1).data.cpu().numpy())
accs = np.stack(accs).mean(axis=0)
sizes = np.array([tn(m.l0_loss().data) for m in models]).cumsum()
plot_pareto(sizes, accs, ds.__name__)
return sizes, accs
def simple_benchmark(ds, replicas=10, epochs=100):
dl = get_dl(ds)
dl2 = get_dl(ds, False)
lambdas = np.power(10.0, -np.arange(0, 5))
lambdas = np.insert(lambdas, 0, 0)
l = lambdas
lambdas = np.tile(lambdas, (replicas, 1)).reshape(-1)
models = [MNIST_1h_sparsifier(500).cuda() for _ in lambdas]
result = train(models, dl, dl2, lamb=lambdas, epochs=epochs, l2_penalty=0)
result = [x.reshape(epochs, replicas, -1).mean(1).T for x in result]
plot_training(l, result[2], result[3], result[0], ds.__name__, epochs)
plot_end(l, result[2], result[3], result[0], ds.__name__, epochs)
return result
if __name__ == '__main__':
print('hello how are you')
# simple_benchmark(MNIST, replicas=30, epochs=60)
# simple_benchmark(FashionMNIST, replicas=30, epochs=60)