forked from mitdbg/fastdeepnets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfixed_training.py
81 lines (78 loc) · 3.45 KB
/
fixed_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import torch
from itertools import product
from torchvision.datasets import MNIST, FashionMNIST
from utils.MNIST import get_dl as get_MNIST
from utils.Add10 import Add10Dataset, get_dl as get_Add10
from utils.Airfoil import AirfoilDataset, get_dl as get_Airfoil
from utils.misc import PreloadedDataloader
from models.MultiLayerDynamicPerceptron import MultiLayerDynamicPerceptron
from uuid import uuid4
from sys import argv
from compress_training import ITERATIONS, DATASETS, SIZES_PER_LAYER, LAYERS
from expriment_summary import get_experiments, get_summary
from algorithms.block_sparse_training_dynamic import compress_train, grow
def get_corresponding_configurations(dataset_name):
ids, experiments = get_experiments(dataset_name)
summaries = get_summary(experiments)
possible_capacities = list(summaries.columns)
capacities_to_get = [x for x in possible_capacities if 'capacity_l' in x]
configurations = summaries[capacities_to_get]
configurations = configurations.astype(int).drop_duplicates() # Don't evaluate the same model multiple times
return configurations.as_matrix().tolist()
def get_model_from_configuration(configuration, dataset):
layers = sum(x > 0 for x in configuration)
f_in = DATASETS[DS]['features_in']
f_out = DATASETS[DS]['features_out']
if hasattr(f_in, '__len__'): # This is a tuple, so a picture => CNN
model = DynamicCNN(
layers,
in_features=f_in,
out_features=f_out,
conv_initial_size=initial_size
)
for i in range(layers):
model.processor[3 * i].grow(configuration[i])
model.processor[3*layers].grow()
model.processor[3*layers + 1].grow(configuration[-1])
model.processor[3*layers +3].grow()
else:
model = MultiLayerDynamicPerceptron(
layers,
in_features=f_in,
out_features=f_out,
initial_size=0
)
for i in range(layers):
model.processor[2 * i].grow(configuration[i])
model.processor[2 * (i + 1)].grow()
model()
return model
if __name__ == "__main__":
DS = 'MNIST'
if argv[-1] in DATASETS.keys():
DS = argv[-1]
print(DS)
train_set, val_set = PreloadedDataloader(DATASETS[DS]['get_train_dl']()).split(0.9)
test_set = PreloadedDataloader(DATASETS[DS]['get_test_dl']())
static_configurations = get_corresponding_configurations(DS)
path_template = "./experiments/%s/%s.experiment"
layers = LAYERS[0]
# Filter only the configurations we are interested in
static_configurations = [x for x in static_configurations if sum(y > 0 for y in x) == layers]
print(len(static_configurations))
for configuration in static_configurations:
print(configuration)
continue
for iteration in range(2):
params = (0, 1, layers, iteration, 'static')
initial_size = SIZES_PER_LAYER[layers]
print(params, sum(configuration))
id = uuid4()
filename = path_template % (DS, id)
model = get_model_from_configuration(configuration, DS).cuda()
stats = compress_train(model, train_set, val_set,
test_set, 0, 1, 0, 5, mode = DATASETS[DS]['mode'])
logs = stats.logs
summary = (params, logs)
torch.save(summary, open(filename, 'wb'))