-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkadai_0_0_2_4.py
430 lines (338 loc) · 12.8 KB
/
kadai_0_0_2_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import _pickle as cPickle
import numpy as np
import matplotlib.pyplot as plt
import cv2
import matplotlib.pyplot as plt
import pickle
# load datasets
def unpickle(file):
with open(file, 'rb') as fo:
dict = cPickle.load(fo, encoding='latin1')
return dict
def select(dataset):
count = 0
select = []
for labels in dataset["labels"]:
if labels > 4:
select.append(count)
count += 1
dataset["data"] = np.delete(dataset["data"], select, axis=0)
for i in reversed(select):
dataset["filenames"].pop(i)
dataset["labels"].pop(i)
return dataset
def reshape_pic_data(dataset):
data_len = len(dataset["labels"])
new_data = np.empty((data_len, 32, 32, 3))
for i in range(data_len):
image = dataset["data"][i]
red = image[0:1024].reshape(32, 32)
blue = image[1024:2048].reshape(32, 32)
green = image[2048:].reshape(32, 32)
new_data[i] = np.dstack((red, green, blue))
return new_data
def convert_image(train_set_orig):
converted_image = train_set_orig["data"].astype(np.uint8)
gray = np.empty((train_set_orig["data"].shape[0],
train_set_orig["data"].shape[1], train_set_orig["data"].shape[2]), dtype=np.uint8)
for i in range(train_set_orig["data"].shape[0]):
gray[i] = cv2.cvtColor(converted_image[i], cv2.COLOR_RGB2GRAY)
return gray
def load_dataset(path):
dataset = unpickle(path)
dataset = select(dataset)
dataset["data"] = reshape_pic_data(dataset)
dataset["data"] = convert_image(dataset)
return dataset
train_set1 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_1")["data"]
train_class1 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_1")["labels"]
train_set2 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_2")["data"]
train_class2 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_2")["labels"]
train_set3 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_3")["data"]
train_class3 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_3")["labels"]
train_set4 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_4")["data"]
train_class4 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_4")["labels"]
train_set5 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_5")["data"]
train_class5 = load_dataset(
"./cifar-10-python/cifar-10-batches-py/data_batch_5")["labels"]
test_set = load_dataset(
"./cifar-10-python/cifar-10-batches-py/test_batch")["data"]
test_class = load_dataset(
"./cifar-10-python/cifar-10-batches-py/test_batch")["labels"]
train_set = np.concatenate(
[train_set1, train_set2, train_set3, train_set4, train_set5])
train_class = train_class1 + train_class2 + \
train_class3 + train_class4 + train_class5
train_class = np.asarray(train_class)
train_class = train_class.reshape([train_class.shape[0], 1])
test_class = np.asarray(test_class)
test_class = test_class.reshape([test_class.shape[0], 1])
# print(train_set.shape)
# print(train_class.shape)
import cupy as np
train_set = np.asarray(train_set)
train_class = np.asarray(train_class)
test_set = np.asarray(test_set)
test_class = np.asarray(test_class)
# flatten and normalize
train_set = train_set.reshape(train_set.shape[0], -1).T / 255.0
test_set = test_set.reshape(test_set.shape[0], -1).T / 255.0
# print(train_set.shape)
# convert to onehot
train_class = np.eye(5)[train_class.reshape(-1)].T
test_class = np.eye(5)[test_class.reshape(-1)].T
# print(test_class.shape)
def create_random_minibatches(batch_num, train_set, train_class, seed):
assert train_set.shape[1] % batch_num == 0
train_sets = []
train_classes = []
batch_train_set_len = train_set.shape[1] // batch_num
perm = np.random.permutation(train_set.shape[1]).tolist()
train_set_shuffled = train_set[:, perm]
train_class_shuffled = train_class[:, perm]
for i in range(0, batch_num):
train_sets.append(
train_set_shuffled[:, (i*batch_train_set_len):((i+1)*batch_train_set_len)])
train_classes.append(
train_class_shuffled[:, (i*batch_train_set_len):((i+1)*batch_train_set_len)])
return train_sets, train_classes
def init_params(dims):
params = {}
for i in range(1, len(dims)):
params['w'+str(i)] = np.random.randn(dims[i], dims[i-1]) * 0.01
params['b'+str(i)] = np.zeros((dims[i], 1))
return params
def relu(z):
a = np.maximum(0, z)
return a
def softmax(z):
# print(z)
a = np.exp(z)/np.sum(np.exp(z), axis=0, keepdims=True)
return a
def for_prop_step(x, w, b, activation_type):
z = np.dot(w, x)+b
if activation_type == "relu":
a = relu(z)
# print(a.shape)
elif activation_type == "softmax":
a = softmax(z)
return z, a
def for_prop(inp, params):
layer_num = len(params)//2
tmps = []
x = inp
# print(x.shape)
for i in range(1, layer_num):
z, a = for_prop_step(x, params['w'+str(i)], params['b'+str(i)], "relu")
tmps.append([z, a, params['w'+str(i)], params['b'+str(i)], x])
x = a
# print(z.shape)
z, a = for_prop_step(
x, params['w'+str(layer_num)], params['b'+str(layer_num)], "softmax")
tmps.append([z, a, params['w'+str(layer_num)],
params['b'+str(layer_num)], x])
return a, tmps
# a, tmps = for_prop(train_set, init_params([train_set.shape[0], 25, 12, 5]))
# print(a)
# tmps return the following [z,a,wi,bi,xi]
def ce_loss_l2(a, label, params, lamb):
# print(label.shape)
layer_num = len(params) // 2
cost_tmp = -np.sum(label*np.log(a), axis=0, keepdims=True)
# print(cost_tmp.shape[1])
cost = np.sum(cost_tmp)/cost_tmp.shape[1]
l2_reg_cost = 0.0
for i in range(0, layer_num):
l2_norm = np.linalg.norm(params["w" + str(i+1)], "fro")
l2_reg_cost += l2_norm ** 2
l2_reg_cost = l2_reg_cost * lamb / 2 / cost_tmp.shape[1]
cost = cost + l2_reg_cost
return cost
#print(ce_loss_l2(a, train_class))
def back_prop_step(da, tmp, activation_type, lamb, minibatch_class):
train_class = minibatch_class
z = np.array(tmp[0], copy=True)
a = np.array(tmp[1], copy=True)
w = np.array(tmp[2], copy=True)
b = np.array(tmp[3], copy=True)
x = np.array(tmp[4], copy=True)
if activation_type == "relu":
dz = np.array(da, copy=True)
dz[z <= 0] = 0
elif activation_type == "softmax":
dz = a-train_class
dw = np.dot(dz, np.transpose(x)) / \
train_class.shape[0] + w * lamb / train_class.shape[0]
db = np.sum(dz, axis=1, keepdims=True) / train_class.shape[0]
dx = np.dot(np.transpose(w), dz)
# print("w")
# print(w.shape)
# print("dw")
# print(dw.shape)
# print(x.shape)
return dx, dw, db
# print(tmps[-1][1])
def back_prop(tmps, minibatch_class):
derivs = {}
layer_num = len(tmps)
derivs["da" + str(layer_num-1)], derivs["dw" + str(layer_num)], derivs["db" +
str(layer_num)] = back_prop_step(None, tmps[-1], "softmax", 0.0, minibatch_class)
for i in reversed(range(layer_num-1)):
da_prev, dw, db = back_prop_step(
derivs["da" + str(i+1)], tmps[i], "relu", 0.0, minibatch_class)
derivs["da" + str(i)] = da_prev
derivs["dw" + str(i+1)] = dw
derivs["db" + str(i+1)] = db
return derivs
# print(back_prop(tmps))
def update(params, derivs, learning_rate):
layer_num = len(params) // 2
for i in range(layer_num):
params["w" + str(i+1)] = params["w" + str(i+1)] - \
learning_rate * derivs["dw" + str(i+1)]
params["b" + str(i+1)] = params["b" + str(i+1)] - \
learning_rate * derivs["db" + str(i+1)]
return params
def learn(train_set, train_class, learning_rate, batch_num, epochs):
cost = 0
cost_prev = 0
cost_prev_prev = 0
train_accu = 0.0
test_accu = 0.0
global test_set
global test_class
costs = []
train_accuracies = []
test_accuracies = []
# initialize params
params = init_params([train_set.shape[0], 4, 5])
for i in range(0, epochs):
seed = 40
train_sets, train_classes = create_random_minibatches(
batch_num, train_set, train_class, seed)
j = 0
if i == 2000 or i == 4000 or i == 6000 or i == 8000:
learning_rate = learning_rate * 0.5
for minibatch in train_sets:
#print("layer" + str(j))
a, tmps = for_prop(minibatch, params)
cost_prev_prev = cost_prev
cost_prev = cost
cost = ce_loss_l2(a, train_classes[j], params, 0.0)
if cost < 0.2 or test_accu > 0.8:
print("Cost after epoch {} : {}" .format(i, np.squeeze(cost)))
print("learning rate: {}" .format(learning_rate))
break
if cost_prev_prev < cost_prev and cost_prev < cost:
learning_rate = learning_rate * 1
derivs = back_prop(tmps, train_classes[j])
params = update(params, derivs, learning_rate)
#print("here")
j += 1
costs.append(cost)
# if i % 100 == 0:
print("Cost after epoch {} : {}" .format(i, np.squeeze(cost)))
print("learning rate: {}" .format(learning_rate))
#print("Train accuracy: {}" .format(train_accu))
#print("Test accuracy: {}" .format(test_accu))
seed += 1
# print(i)
if i % 1000 == 0:
prob1, train_accu = accuracy(
train_set, train_class, params)
prob2, test_accu = accuracy(
test_set, test_class, params)
train_accuracies.append(train_accu)
test_accuracies.append(test_accu)
print("Train accuracy: {}" .format(train_accu))
print("Test accuracy: {}" .format(test_accu))
return params, costs, train_accuracies, test_accuracies
def accuracy(data, label, params):
# print(data.shape[1])
m = data.shape[1]
n = len(params) // 2
prob, tmps = for_prop(data, params)
#print(prob[:, 0])
types = prob[:, 0].shape[0]
# print(types)
for i in range(0, prob.shape[1]):
m_index = np.argmax(prob[:, i])
# print(m_index)
for j in range(0, types):
if j == m_index:
prob[j][i] = 1
# print("prob")
# print(prob[j][i])
else:
prob[j][i] = 0
sum = 0.0
for i in range(0, m):
#print("prob: {}".format(prob[:, i]))
#print("label: {}".format(label[:, i]))
if (prob[:, i] == label[:, i]).all():
sum += 1.0
#print("Accuracy:" + str(sum/float(m)))
return prob, sum/float(m)
#print("learning rate = 0.0005")
#params = learn(train_set, train_class, 0.0005, 3500)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)
#print("learning rate = 0.0004")
#learn(train_set, train_class, 0.0004, 3500)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)
#print("learning rate = 0.0003")
#learn(train_set, train_class, 0.0003, 4000)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)
#print("learning rate = 0.0002")
#learn(train_set, train_class, 0.0002, 4000)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)
print("learning rate = 0.0002")
params, costs, train_accuracies, test_accuracies = learn(
train_set, train_class, 0.0002, 25, 4000)
prob1, train_accu = accuracy(train_set, train_class, params)
prob2, test_accu = accuracy(test_set, test_class, params)
print("Train accuracy: {}" .format(train_accu))
print("Test accuracy: {}" .format(test_accu))
path = './costs/kadai_0_0_2_4.txt'
f = open(path,'w')
f.write(str(costs[-1]))
f.close
with open('./params_0_0_2_4.pickle', mode='wb') as f:
pickle.dump(params, f)
fig = plt.figure()
plt.plot(costs, label="cost")
plt.title('cost')
plt.xlabel('epoch')
plt.ylabel('cost')
plt.legend(loc="lower right")
fig.savefig("./result/cost_0_0_2_4.png")
# plt.show()
fig = plt.figure()
plt.plot(train_accuracies, label="train_accuracy")
plt.plot(test_accuracies, label="test_accuracy")
plt.title('Accuracy')
plt.xlabel('epoch (per 1000)')
plt.ylabel('accuracy')
plt.legend(loc="lower right")
fig.savefig("./result/accuracy_0_0_2_4.png")
# plt.show()
#print("learning rate = 0.00005")
#learn(train_set, train_class, 0.00005, 6000)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)
#print("learning rate = 0.00001")
#learn(train_set, train_class, 0.00001, 10000)
#accuracy(train_set, train_class, params)
#accuracy(test_set, test_class, params)