forked from carpedm20/simulated-unsupervised-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
322 lines (274 loc) · 13.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import tensorflow as tf
from tensorflow.contrib.framework import arg_scope
from layers import *
from utils import show_all_variables
class Model(object):
def __init__(self, config, data_loader):
self.data_loader = data_loader
self.task = config.task
self.debug = config.debug
self.config = config
self.input_height = config.input_height
self.input_width = config.input_width
self.input_channel = config.input_channel
self.reg_scale = config.reg_scale
self.learning_rate = config.learning_rate
self.max_grad_norm = config.max_grad_norm
self.batch_size = config.batch_size
self.layer_dict = {}
self._build_placeholders()
self._build_model()
self._build_steps()
self._build_optim()
show_all_variables()
def _build_placeholders(self):
image_dims = [self.input_height, self.input_width, self.input_channel]
min_after_dequeue = 5000
capacity = min_after_dequeue + 3 * self.batch_size
self.synthetic_batch_size = tf.placeholder(tf.int32, [], "synthetic_batch_size")
self.synthetic_filenames, self.synthetic_images = \
image_from_paths(self.data_loader.synthetic_data_paths,
self.data_loader.synthetic_data_dims, seed=self.config.random_seed)
self.x_filename, self.x = tf.train.shuffle_batch(
[self.synthetic_filenames, self.synthetic_images],
batch_size=self.synthetic_batch_size,
num_threads=4, capacity=capacity,
min_after_dequeue=min_after_dequeue, name='synthetic_inputs')
self.test_x_filename, self.test_x = tf.train.batch(
[self.synthetic_filenames, self.synthetic_images],
batch_size=self.synthetic_batch_size,
num_threads=1, capacity=capacity,
name='synthetic_test_inputs')
if not self.config.is_train:
self.x_filename, self.x = \
self.test_x_filename, self.test_x
self.y = tf.placeholder(
tf.uint8, [None, None, None, self.input_channel], name='real_inputs')
self.R_x_history = tf.placeholder(
tf.float32, [None, None, None, self.input_channel], 'R_x_history')
resize_dim = [self.input_height, self.input_width]
self.resized_x = tf.image.resize_images(self.x, resize_dim)
self.resized_y = tf.image.resize_images(self.y, resize_dim)
self.resized_test_x = tf.image.resize_images(self.test_x, resize_dim)
self.normalized_x = normalize(self.resized_x)
self.normalized_y = normalize(self.resized_y)
self.refiner_step = tf.Variable(0, name='refiner_step', trainable=False)
self.discrim_step = tf.Variable(0, name='discrim_step', trainable=False)
def _build_optim(self):
def minimize(loss, step, var_list):
if self.config.optimizer == "sgd":
optim = tf.train.GradientDescentOptimizer(self.learning_rate)
elif self.config.optimizer == "adam":
optim = tf.train.AdamOptimizer(self.learning_rate)
else:
raise Exception("[!] Unkown optimizer: {}".format(self.config.optimizer))
if self.max_grad_norm != None:
grads_and_vars = optim.compute_gradients(loss)
new_grads_and_vars = []
for idx, (grad, var) in enumerate(grads_and_vars):
if grad is not None and var in var_list:
new_grads_and_vars.append((tf.clip_by_norm(grad, self.max_grad_norm), var))
return optim.apply_gradients(new_grads_and_vars,
global_step=step)
else:
return optim.minimize(loss, global_step=step, var_list=var_list)
if self.task == "generative":
self.refiner_optim = minimize(
self.refiner_loss, self.refiner_step, self.refiner_vars)
self.discrim_optim = minimize(
self.discrim_loss, self.discrim_step, self.discrim_vars)
self.discrim_optim_with_history = minimize(
self.discrim_loss_with_history, self.discrim_step, self.discrim_vars)
elif self.task == "estimate":
raise Exception("[!] Not implemented yet")
def _build_model(self):
with arg_scope([resnet_block, conv2d, max_pool2d, tanh],
layer_dict=self.layer_dict):
self.R_x = self._build_refiner(self.normalized_x)
self.denormalized_R_x = denormalize(self.R_x)
self.D_y, self.D_y_logits = \
self._build_discrim(self.normalized_y, name="D_y")
self.D_R_x, self.D_R_x_logits = \
self._build_discrim(self.R_x, name="D_R_x", reuse=True)
self.D_R_x_history, self.D_R_x_history_logits = \
self._build_discrim(self.R_x_history,
name="D_R_x_history", reuse=True)
#self.estimate_outputs = self._build_estimation_network()
self._build_loss()
def _build_loss(self):
# Refiner loss
def fake_label(layer):
return tf.zeros_like(layer, dtype=tf.int32)[:,:,:,0]
def real_label(layer):
return tf.ones_like(layer, dtype=tf.int32)[:,:,:,0]
def log_loss(logits, label, name):
return tf.reduce_sum(SE_loss(logits=logits, labels=label), [1, 2], name=name)
with tf.name_scope("refiner"):
self.realism_loss = log_loss(
self.D_R_x_logits, real_label(self.D_R_x_logits), "realism_loss")
self.regularization_loss = \
self.reg_scale * tf.reduce_sum(
tf.abs(self.R_x - self.normalized_x), [1, 2, 3],
name="regularization_loss")
self.refiner_loss = tf.reduce_mean(
self.realism_loss + self.regularization_loss,
name="refiner_loss")
if self.debug:
self.refiner_loss = tf.Print(
self.refiner_loss, [self.R_x], "R_x")
self.refiner_loss = tf.Print(
self.refiner_loss, [self.D_R_x], "D_R_x")
self.refiner_loss = tf.Print(
self.refiner_loss, [self.normalized_x], "normalized_x")
self.refiner_loss = tf.Print(
self.refiner_loss, [self.denormalized_R_x], "denormalized_R_x")
self.refiner_loss = tf.Print(
self.refiner_loss, [self.regularization_loss], "reg_loss")
self.refiner_summary = tf.summary.merge([
#tf.summary.image("synthetic_images",
# self.x, max_outputs=self.config.max_image_summary),
#tf.summary.image("refined_images",
# self.denormalized_R_x, max_outputs=self.config.max_image_summary),
tf.summary.scalar("refiner/realism_loss",
tf.reduce_mean(self.realism_loss)),
tf.summary.scalar("refiner/regularization_loss",
tf.reduce_mean(self.regularization_loss)),
tf.summary.scalar("refiner/loss",
tf.reduce_mean(self.refiner_loss)),
])
# Discriminator loss
with tf.name_scope("discriminator"):
self.refiner_d_loss = log_loss(
self.D_R_x_logits, fake_label(self.D_R_x_logits), "refiner_d_loss")
self.synthetic_d_loss = log_loss(
self.D_y_logits, real_label(self.D_y_logits), "synthetic_d_loss")
self.discrim_loss = tf.reduce_mean(
self.refiner_d_loss + \
self.synthetic_d_loss, name="discrim_loss")
# with history
self.refiner_d_loss_with_history = log_loss(
self.D_R_x_history_logits,
fake_label(self.D_R_x_history_logits),
"refiner_d_loss_with_history")
self.discrim_loss_with_history = tf.reduce_mean(
tf.concat_v2([self.refiner_d_loss, self.refiner_d_loss_with_history], axis=0) + \
self.synthetic_d_loss, name="discrim_loss_with_history")
if self.debug:
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.D_R_x_logits], "D_R_x_logits")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.D_y_logits], "D_y_logits")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.refiner_d_loss], "refiner_d_loss")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.refiner_d_loss_with_history], "refiner_d_loss_with_history")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.synthetic_d_loss], "synthetic_d_loss")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.D_R_x_history_logits], "D_R_x_history_logits")
self.discrim_loss_with_history = tf.Print(
self.discrim_loss_with_history, [self.D_y_logits], "D_y_logits")
self.discrim_summary = tf.summary.merge([
#tf.summary.image("real_images",
# self.resized_y, max_outputs=self.config.max_image_summary),
tf.summary.scalar("synthetic_d_loss",
tf.reduce_mean(self.synthetic_d_loss)),
tf.summary.scalar("refiner_d_loss",
tf.reduce_mean(self.refiner_d_loss)),
tf.summary.scalar("discrim_loss",
tf.reduce_mean(self.discrim_loss)),
])
self.discrim_summary_with_history = tf.summary.merge([
#tf.summary.image("real_images",
# self.resized_y, max_outputs=self.config.max_image_summary),
tf.summary.scalar("synthetic_d_loss",
tf.reduce_mean(self.synthetic_d_loss)),
tf.summary.scalar("refiner_d_loss_with_history",
tf.reduce_mean(self.refiner_d_loss_with_history)),
tf.summary.scalar("discrim_loss_with_history",
tf.reduce_mean(self.discrim_loss_with_history)),
])
def _build_steps(self):
def run(sess, feed_dict, fetch,
summary_op, summary_writer, output_op=None):
if summary_writer is not None:
fetch['summary'] = summary_op
if output_op is not None:
fetch['output'] = output_op
result = sess.run(fetch, feed_dict=feed_dict)
if result.has_key('summary'):
summary_writer.add_summary(result['summary'], result['step'])
summary_writer.flush()
return result
def train_refiner(sess, feed_dict, summary_writer=None, with_output=False):
fetch = {
'loss': self.refiner_loss,
'optim': self.refiner_optim,
'step': self.refiner_step,
}
return run(sess, feed_dict, fetch,
self.refiner_summary, summary_writer,
output_op=self.R_x if with_output else None)
def test_refiner(sess, feed_dict, summary_writer=None, with_output=False):
fetch = {
'filename': self.x_filename,
'loss': self.refiner_loss,
'step': self.refiner_step,
}
return run(sess, feed_dict, fetch,
self.refiner_summary, summary_writer,
output_op=self.R_x if with_output else None)
def train_discrim(sess, feed_dict, summary_writer=None,
with_history=False, with_output=False):
fetch = {
'loss': self.discrim_loss_with_history,
'optim': self.discrim_optim_with_history,
'step': self.discrim_step,
}
return run(sess, feed_dict, fetch,
self.discrim_summary_with_history if with_history \
else self.discrim_summary, summary_writer,
output_op=self.D_R_x if with_output else None)
def test_discrim(sess, feed_dict, summary_writer=None,
with_history=False, with_output=False):
fetch = {
'loss': self.discrim_loss,
'step': self.discrim_step,
}
return run(sess, feed_dict, fetch,
self.discrim_summary_with_history if with_history \
else self.discrim_summary, summary_writer,
output_op=self.D_R_x if with_output else None)
self.train_refiner = train_refiner
self.test_refiner = test_refiner
self.train_discrim = train_discrim
self.test_discrim = test_discrim
def _build_refiner(self, layer):
with tf.variable_scope("refiner") as sc:
layer = repeat(layer, 4, resnet_block, scope="resnet")
layer = conv2d(layer, 1, 1, 1,
activation_fn=None, scope="conv_1")
output = tanh(layer, name="tanh")
self.refiner_vars = tf.contrib.framework.get_variables(sc)
return output
def _build_discrim(self, layer, name, reuse=False):
with tf.variable_scope("discriminator", reuse=reuse) as sc:
layer = conv2d(layer, 96, 3, 2, scope="conv_1", name=name)
layer = conv2d(layer, 64, 3, 2, scope="conv_2", name=name)
layer = max_pool2d(layer, 3, 1, scope="max_1", name=name)
layer = conv2d(layer, 32, 3, 1, scope="conv_3", name=name)
layer = conv2d(layer, 32, 1, 1, scope="conv_4", name=name)
logits = conv2d(layer, 2, 1, 1, scope="conv_5", name=name)
output = tf.nn.softmax(logits, name="softmax")
self.discrim_vars = tf.contrib.framework.get_variables(sc)
return output, logits
def _build_estimation_network(self):
layer = self.normalized_x
with tf.variable_scope("estimation"):
layer = conv2d(layer, 96, 3, 2, scope="conv_1")
layer = conv2d(layer, 64, 3, 2, scope="conv_2")
layer = max_pool2d(layer, 64, 3, scope="max_1")
layer = conv2d(layer, 32, 3, 1, scope="conv_3")
layer = conv2d(layer, 32, 1, 1, scope="conv_4")
layer = conv2d(layer, 2, 1, 1, activation_fn=slim.softmax)
return layer