forked from NVIDIA/nvvl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_frames.cpp
232 lines (199 loc) · 8.51 KB
/
extract_frames.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <iostream>
#ifdef HAVE_OPENCV
# include <opencv2/imgcodecs.hpp>
# include <opencv2/cudaimgproc.hpp>
# include <opencv2/cudaarithm.hpp>
#endif
#include <cuda.h>
#include "VideoLoader.h"
#include "cuda/utils.h"
constexpr auto sequence_width = uint16_t{1280/2};
constexpr auto sequence_height = uint16_t{720/2};
constexpr auto sequence_count = uint16_t{4};
constexpr auto scale_width = int16_t{1280/2};
constexpr auto scale_height = int16_t{720/2};
constexpr auto device_id = 1;
using PictureSequence = NVVL::PictureSequence;
template<typename T>
T* new_data(size_t* pitch, size_t width, size_t height) {
T* data;
if(cudaMallocPitch(&data, pitch, width * sizeof(T), height) != cudaSuccess) {
throw std::runtime_error("Unable to allocate buffer in device memory");
}
return data;
}
// just use one buffer for each different type
template<typename T>
auto get_data(size_t* ret_pitch) {
static size_t pitch;
static auto data = std::unique_ptr<T, decltype(&cudaFree)>{
new_data<T>(&pitch, sequence_width, sequence_height * sequence_count * 3),
cudaFree};
*ret_pitch = pitch / sizeof(T);
return data.get();
}
#ifdef HAVE_OPENCV
template<typename T>
cv::cuda::GpuMat get_pixels(const PictureSequence& sequence, int index,
std::initializer_list<int> channel_order) {
auto pixels = sequence.get_layer<T>("data", index);
auto type = cv::DataType<T>::type;
auto channels = std::vector<cv::cuda::GpuMat>();
for (auto i : channel_order) {
channels.emplace_back(pixels.desc.height, pixels.desc.width, type,
pixels.data + pixels.desc.stride.c*i,
pixels.desc.stride.y * sizeof(T));
}
auto tmp = cv::cuda::GpuMat();
cv::cuda::merge(channels, tmp);
auto out = cv::cuda::GpuMat();
tmp.convertTo(out, CV_8U, pixels.desc.normalized ? 255.0 : 1.0);
return out;
}
template<>
cv::cuda::GpuMat get_pixels<half>(const PictureSequence& sequence, int index,
std::initializer_list<int> channel_order) {
auto pixels = sequence.get_layer<half>("data", index);
auto channels = std::vector<cv::cuda::GpuMat>();
for (auto i : channel_order) {
auto channel = cv::cuda::GpuMat(pixels.desc.height, pixels.desc.width, CV_32FC1);
half2float(pixels.data + pixels.desc.stride.c*i, pixels.desc.stride.y,
pixels.desc.width, pixels.desc.height,
channel.ptr<float>(), channel.step1());
channels.push_back(channel);
}
auto tmp = cv::cuda::GpuMat();
cv::cuda::merge(channels, tmp);
auto out = cv::cuda::GpuMat();
tmp.convertTo(out, CV_8U, pixels.desc.normalized ? 255.0 : 1.0);
return out;
}
template<typename T>
void write_frame(const PictureSequence& sequence) {
auto frame_nums = sequence.get_meta<int>("frame_num");
for (int i = 0; i < sequence.count(); ++i) {
auto pixels = sequence.get_layer<T>("data", i);
auto gpu_bgr = cv::cuda::GpuMat();
if (pixels.desc.color_space == ColorSpace_RGB) {
gpu_bgr = get_pixels<T>(sequence, i, {2, 1, 0});
} else {
auto gpu_yuv = get_pixels<T>(sequence, i, {0, 2, 1});
cv::cuda::cvtColor(gpu_yuv, gpu_bgr, CV_YCrCb2BGR);
}
cv::Mat host_bgr;
gpu_bgr.download(host_bgr);
char output_file[256];
auto frame_num = frame_nums[i];
sprintf(output_file,"./output/frames/%05d.png",frame_num);
cv::imwrite(output_file,host_bgr);
std::cout << "Wrote frame " << frame_num << std::endl;
}
}
#else // no OpenCV
template<typename T>
struct host_type{ using type = T; };
template<>
struct host_type<half>{ using type = float; };
template<typename T>
typename host_type<T>::type* dev_data(const PictureSequence::Layer<T>& layer, size_t* pitch) {
*pitch = layer.desc.stride.y;
return layer.data;
}
template<>
host_type<half>::type* dev_data<half>(const PictureSequence::Layer<half>& layer, size_t* pitch) {
auto dev_floats = get_data<float>(pitch);
half2float(layer.data, layer.desc.stride.y,
layer.desc.width, layer.desc.height,
dev_floats, *pitch);
return dev_floats;
}
template<typename T>
void write_frame(const PictureSequence& sequence) {
constexpr auto sample_count = 100;
auto frame_nums = sequence.get_meta<int>("frame_num");
std::cout << "Got a sequence of size: " << sequence.count() << std::endl;
for (int i = 0; i < sequence.count(); ++i) {
auto pixels = sequence.get_layer<T>("data", i);
size_t data_stride = 0;
auto data = dev_data(pixels, &data_stride);
typename host_type<T>::type tmp[sample_count];
uint32_t sum = 0;
for (int c = 0; c < 3; ++c) {
if (cudaMemcpy(tmp, data + data_stride*pixels.desc.height*c,
sample_count * sizeof(*data), cudaMemcpyDeviceToHost)
!= cudaSuccess) {
throw std::runtime_error("Couldn't copy frame data to cpu");
}
for (int i = 0; i < sample_count; i++) {
sum += static_cast<uint32_t>(tmp[i]);
}
}
std::cout << " Frame " << frame_nums[i]
<< " sum (first " << sample_count << " of each channel): "
<< sum << std::endl;
}
}
#endif
NVVL::VideoLoader* loader;
template<typename T>
void process_frames(NVVL::VideoLoader& loader, NVVL::ColorSpace color_space,
bool scale, bool normalized, bool flip,
NVVL::ScaleMethod scale_method = ScaleMethod_Linear)
{
auto s = PictureSequence{sequence_count, device_id};
auto pixels = PictureSequence::Layer<T>{};
pixels.data = get_data<T>(&pixels.desc.stride.y);
pixels.desc.count = sequence_count;
pixels.desc.channels = 3;
pixels.desc.width = sequence_width;
pixels.desc.height = sequence_height;
if (scale) {
pixels.desc.scale_width = scale_width;
pixels.desc.scale_height = scale_height;
}
pixels.desc.horiz_flip = flip;
pixels.desc.normalized = normalized;
pixels.desc.color_space = color_space;
pixels.desc.scale_method = scale_method;
pixels.desc.stride.x = 1;
pixels.desc.stride.c = pixels.desc.stride.y * pixels.desc.height;
pixels.desc.stride.n = pixels.desc.stride.c * 3;
s.set_layer("data", pixels);
loader.receive_frames_sync(s);
write_frame<T>(s);
}
int main(int argc, char** argv) {
if (argc < 2) {
std::cout << "usage: " << argv[0] << " <video file>\n";
return -1;
}
auto loader = NVVL::VideoLoader{device_id};
auto filename = argv[1];
auto frame_count = loader.frame_count(filename);
std::cout << "Looks like there are " << frame_count << " frames" << std::endl;
// just enqueue all the frames, probably won't use them all
loader.read_sequence(filename, 0, frame_count);
// type color space scale norm flip
process_frames<uint8_t>(loader, ColorSpace_RGB, false, false, false); // 0-3
process_frames<uint8_t>(loader, ColorSpace_RGB, false, false, true); // 4-7
process_frames<uint8_t>(loader, ColorSpace_RGB, true, false, false); // 8-11
process_frames<uint8_t>(loader, ColorSpace_RGB, true, false, true); // 12-15
process_frames<uint8_t>(loader, ColorSpace_YCbCr, false, false, false); // 16-19
process_frames<uint8_t>(loader, ColorSpace_YCbCr, true, false, false); // 20-23
process_frames<float> (loader, ColorSpace_RGB, false, false, false); // 24-27
process_frames<float> (loader, ColorSpace_RGB, true, false, false); // 28-31
process_frames<float> (loader, ColorSpace_RGB, true, true, false); // 32-35
process_frames<float> (loader, ColorSpace_YCbCr, true, false, false); // 36-39
process_frames<float> (loader, ColorSpace_YCbCr, true, true, false); // 40-43
process_frames<half> (loader, ColorSpace_RGB, false, false, false); // 44-47
process_frames<half> (loader, ColorSpace_RGB, true, false, false); // 48-51
process_frames<half> (loader, ColorSpace_RGB, true, true, false); // 52-55
process_frames<half> (loader, ColorSpace_YCbCr, true, false, false); // 56-59
process_frames<half> (loader, ColorSpace_YCbCr, true, true, false); // 60-63
auto stats = loader.get_stats();
std::cout << "Total video packets read: " << stats.packets_read
<< " (" << stats.bytes_read << " bytes)\n"
<< "Total frames used: " << stats.frames_used
<< std::endl;
return 0;
}