forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConcat.lua
158 lines (146 loc) · 5.39 KB
/
Concat.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
local Concat, parent = torch.class('nn.Concat', 'nn.Container')
function Concat:__init(dimension)
parent.__init(self)
self.outputSize = torch.LongStorage()
self.dimension = dimension
end
function Concat:updateOutput(input)
self.outputSize = self.outputSize or torch.LongStorage()
local outs = {}
for i=1,#self.modules do
local currentOutput = self:rethrowErrors(self.modules[i], i, 'updateOutput', input)
outs[i] = currentOutput
if i == 1 then
self.outputSize:resize(currentOutput:dim()):copy(currentOutput:size())
else
self.outputSize[self.dimension] = self.outputSize[self.dimension] + currentOutput:size(self.dimension)
end
end
self.output:resize(self.outputSize)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = outs[i]
self.output:narrow(self.dimension, offset, currentOutput:size(self.dimension)):copy(currentOutput)
offset = offset + currentOutput:size(self.dimension)
end
return self.output
end
local function retable(t1, t2, f)
for k, v in ipairs(t2) do
if (torch.type(v) == "table") then
t1[k] = retable(t1[k] or {}, t2[k], f)
else
f(t1, k, v)
end
end
for i=#t2+1, #t1 do
t1[i] = nil
end
return t1
end
local function backward(self, method, input, gradOutput, scale)
local isTable = torch.type(input) == 'table'
local wasTable = torch.type(self.gradInput) == 'table'
scale = scale or 1
if isTable then
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
local currentGradInput = self:rethrowErrors(module, i, method, input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)), scale)
if torch.type(currentGradInput) ~= 'table' then
error"currentGradInput is not a table!"
end
if #input ~= #currentGradInput then
error("table size mismatch: "..#input.." ~= "..#currentGradInput)
end
if i == 1 then
self.gradInput = wasTable and self.gradInput or {}
retable(self.gradInput, currentGradInput,
function(t, k, v)
t[k] = t[k] or v:clone()
t[k]:resizeAs(v)
t[k]:copy(v)
end
)
else
retable(self.gradInput, currentGradInput,
function(t, k, v)
if t[k] then
t[k]:add(v)
else
t[k] = v:clone()
end
end
)
end
offset = offset + currentOutput:size(self.dimension)
end
else
self.gradInput = (not wasTable) and self.gradInput:resizeAs(input) or input:clone()
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
local currentGradInput = self:rethrowErrors(module, i, method, input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)), scale)
if currentGradInput then -- if the module does not produce a gradInput (for example first layer), then ignore it and move on.
if i==1 then
self.gradInput:copy(currentGradInput)
else
self.gradInput:add(currentGradInput)
end
end
offset = offset + currentOutput:size(self.dimension)
end
end
return self.gradInput
end
function Concat:updateGradInput(input, gradOutput)
return backward(self, 'updateGradInput', input, gradOutput)
end
function Concat:backward(input, gradOutput, scale)
return backward(self, 'backward', input, gradOutput, scale)
end
function Concat:accGradParameters(input, gradOutput, scale)
scale = scale or 1
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
self:rethrowErrors(module, i, 'accGradParameters', input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)),
scale)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:accUpdateGradParameters(input, gradOutput, lr)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
self:rethrowErrors(module, i, 'accUpdateGradParameters',
input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)),
lr)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:__tostring__()
local tab = ' '
local line = '\n'
local next = ' |`-> '
local lastNext = ' `-> '
local ext = ' | '
local extlast = ' '
local last = ' ... -> '
local str = torch.type(self)
str = str .. ' {' .. line .. tab .. 'input'
for i=1,#self.modules do
if i == #self.modules then
str = str .. line .. tab .. lastNext .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. extlast)
else
str = str .. line .. tab .. next .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. ext)
end
end
str = str .. line .. tab .. last .. 'output'
str = str .. line .. '}'
return str
end