-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr4spa.Rmd
216 lines (162 loc) · 4.08 KB
/
r4spa.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
title: "R4SPA: R Packages and Training to enable Statistical Programming in R"
author: "Kieran Martin"
date: "2018/08/16"
output:
xaringan::moon_reader:
css: ["./libs/remark-css/default.css","./libs/remark-css/metropolis.css", "./libs/remark-css/metropolis-fonts.css" ]
lib_dir: libs
chakra: libs/remark-latest.min.js
nature:
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
---
```{r setup, include=FALSE}
options(htmltools.dir.version = FALSE)
```
# Outline
.font150[
Who are we?
What is the problem we are facing?
How are we solving it?
]
---
# Who are we?
- This work today is a collaboration between two people:
- Kieran Martin and Craig Gower
- check out https://github.com/gowerc and https://github.com/kieranjmartin
- My twitter is @kjmartinstats
- Both Data Analytic Specialists at Roche
.footnote[Slides today are hosted here: https://kieranjmartin.github.io/R4SPA-talk/r4spa.html]
---
# What is the problem?
Statistical Programmers want to use R!
<br><br>
--
- Lots of attendance on R training courses
- Lots of engagement in discussion around R
--
<br><br><br>
.content-box-green[But very little... actual R outputs!]
---
# What is the problem?
Lack of use cases for R
--
One key piece of programming work is setting up and qcing analysis datasets
--
Reluctance to use R for this task
<br><br><br>
--
.content-box-blue-centre[
**Why?**
]
---
# Why?
.content-box-blue[
Belief that data manipulation in R is **difficult**
]
--
<br>
.content-box-blue[
Lack of tools (proc compare)
]
--
<br>
.content-box-blue[
Training was disconnected from real tasks
]
---
# What are we doing?
.content-box-green[
In house training on **data manipulation** using the **tidyverse**
]
--
**What makes this different?**
--
- Focused on **one** task: data derivation
--
- tidyverse makes **easier** to read code (those with less R experience)
--
- Exercises based on our data and specifications
--
- Plan to train people with a specific **use case** for the training
---
#What we are doing?
**diffdf**
.content-box-green[
Package for **comparing datasets**
Gives **informative feedback** on where issues are
]
--
Main page: https://gowerc.github.io/diffdf/
Now on CRAN: https://CRAN.R-project.org/package=diffdf
Check out github: https://github.com/gowerc/diffdf
---
# diffdf: missing columns:
<br>
```{r, include = FALSE}
LENGTH = 30
set.seed(12334)
test_data <- tibble::tibble(
ID = 1:LENGTH,
GROUP1 = rep( c(1,2) , each = LENGTH/2),
GROUP2 = rep( c(1:(LENGTH/2)), 2 ),
INTEGER = rpois(LENGTH , 40),
BINARY = sample( c("M" , "F") , LENGTH , replace = T),
DATE = lubridate::ymd("2000-01-01") + rnorm(LENGTH, 0, 7000),
DATETIME = lubridate::ymd_hms("2000-01-01 00:00:00") + rnorm(LENGTH, 0, 200000000),
CONTINUOUS = rnorm(LENGTH , 30 , 12),
CATEGORICAL = factor(sample( c("A" , "B" , "C") , LENGTH , replace = T)),
LOGICAL = sample( c(TRUE , FALSE) , LENGTH , replace = T),
CHARACTER = stringi::stri_rand_strings(LENGTH, rpois(LENGTH , 13), pattern = "[ A-Za-z0-9]")
)
```
```{r, warning=FALSE}
library(diffdf)
test_data2 <- test_data
test_data2 <- test_data2[,-6]
diffdf(test_data , test_data2)
```
---
# diffdf: missing rows
<br>
```{r, warning=FALSE}
test_data2 <- test_data
test_data2 <- test_data2[1:(nrow(test_data2) - 2),]
diffdf(test_data, test_data2, keys = "ID")
```
---
# diffdf: different values
<br>
```{r, warning=FALSE}
test_data2 <- test_data
test_data2[5,2] <- 6
difval <- diffdf(test_data , test_data2, keys = "ID" )
difval$NumDiff
difval$VarDiff_GROUP1
```
---
# diffdf: different attributes
<br>
```{r, warning=FALSE}
test_data2 <- test_data
attr(test_data$ID , "label") <- "This is a interesting label"
attr(test_data2$ID , "label") <- "A different label"
diffdf(test_data , test_data2, keys = "ID" )
```
---
# Plans for the future
.content-box-green[
Roll out training across sites
]
--
<br>
.content-box-blue[
Build more packages to address common problems
]
--
<br>
.content-box-green[
Build more training focusing on different tasks in R
]