forked from child-growth/causes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
0-config.R
174 lines (139 loc) · 8.2 KB
/
0-config.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#-------------------------------------
# ki longitudinal analysis manuscripts
# configure data directories
# source base functions
# load libraries
#-------------------------------------
kiPath <- c("/data/KI/R/x86_64-pc-linux-gnu-library/4.0/" , .libPaths())
.libPaths(kiPath)
library(tidyverse)
library(here)
library(ggplot2)
library(ggpubr)
#library(dplyr)
library(gridExtra)
library(reshape2)
library(metafor)
library(data.table)
library(viridis)
library(ggthemes)
library(maps)
library(FField)
library(ggridges)
library(ggridges)
library(RColorBrewer)
library(gridExtra)
library(assertthat)
# library(haven)
#library(tidyselect)
# options(repos = c(CRAN = "http://cran.rstudio.com/",
# deltarho = "http://packages.deltarho.org"))
library(stringr)
library(mgcv)
library(grid)
library(lazyeval)
library(scales)
library(xtable)
# for parallel computing
# (will need to configure in each script)
library(foreach)
library(doParallel)
library(survey)
# install.packages("bit64")
library(bit64)
library(zoo)
# Define directories
# results that can be pushed to github:
#res_dir = here::here("results/")
res_dir = "data/KI/ki-manuscript-output/results/"
# results that cannot be pushed to github:
res_bluevelvet_dir = "/data/KI/UCB-SuperLearner/ki-results/"
#dhs_res_dir = here::here("results", "dhs")
dhs_res_dir = "/data/KI/ki-manuscript-output/results/dhs/"
#data_dir = here::here("data")
data_dir = "/data/KI/ki-manuscript-output/data/"
res_dir = "/data/KI/ki-manuscript-output/results/"
metadata_dir = "U:/results/Metadata/"
#ghapdata_dir = "/home/andrew.mertens/data/KI/UCB-SuperLearner/Manuscript analysis data/"
ghapdata_dir = "/data/KI/UCB-SuperLearner/Manuscript analysis data/"
#Bluevelvet directory
BV_dir = "/data/KI/ki-manuscript-output/"
project_functions_dir = here::here("0-project-functions")
data_cleaning_dir = here::here("1-data-cleaning")
descriptive_outcomes_dir = here::here("2-descriptive-outcomes")
prep_tmle_analysis_dir = here::here("3-prep-tmle-analysis")
longbow_tmle_analysis_dir = here::here("4-longbow-tmle-analysis")
visualizations_dir = here::here("5-visualizations")
shiny_app_dir = here::here("6-shiny-app")
cc_shiny_app_dir = here::here("7-cc-shiny-app")
#Set cohort data file path
cohortdata_dir = paste0(ghapdata_dir, "cleaned individual study datasets/")
deriveddata_dir = paste0(ghapdata_dir, "covariate creation intermediate datasets/derived covariate datasets/")
# note: figures must be saved in same directory
# as shiny app in order to publish it
# fig_dir = paste0(here::here(),"/figures/")
# figdata_dir_stunting = paste0(here::here(),"/figures/stunting/figure-data/")
# figdata_dir_wasting = paste0(here::here(),"/figures/wasting/figure-data/")
BV_dir = "/data/KI/ki-manuscript-output"
fig_dir = "figures/"
figdata_dir_stunting = paste0(fig_dir,"stunting/figure-data/")
figdata_dir_wasting = paste0(fig_dir,"wasting/figure-data/")
#################################
# Data Cleaning Scripts
included_studies_path = paste0(ghapdata_dir, "FINAL_only_included_studies.rds")
temp_clean_covariates_path = paste0(ghapdata_dir, "FINAL_temp_clean_covariates.rds")
clean_covariates_path = paste0(ghapdata_dir,"FINAL_clean_covariates.rds")
ki_manuscript_dataset_path = paste0(ghapdata_dir,"ki-manuscript-dataset.rds")
mortality_path = paste0(ghapdata_dir,"mortality.rds")
mortality_age_path = paste0(ghapdata_dir,"mortality_age.rds")
rf_stunting_data_path = paste0(ghapdata_dir, "rf_stunting_data.rds")
rf_wasting_data_path = paste0(ghapdata_dir, "rf_wasting_data.rds")
rf_underweight_path = paste0(ghapdata_dir, "rf_underweight_data.rds")
rf_co_occurrence_path = paste0(ghapdata_dir, "rf_co_occurrence_data.rds")
stunting_data_path = paste0(ghapdata_dir, "stunting_data.rds")
wasting_data_path = paste0(ghapdata_dir, "wasting_data.rds")
underweight_data_path = paste0(ghapdata_dir, "underweight_data.rds")
co_occurrence_data_path = paste0(ghapdata_dir, "co_occurrence_data.rds")
clean_DHS_haz_path = paste0(dhs_res_dir, "clean-DHS-haz.rds")
clean_DHS_waz_path = paste0(dhs_res_dir, "clean-DHS-waz.rds")
clean_DHS_whz_path = paste0(dhs_res_dir, "clean-DHS-whz.rds")
dhs_quantiles_path = paste0(dhs_res_dir, "/dhs_quantiles.rds")
seasonality_data_path = paste0(ghapdata_dir,"seasonality_data.rds")
HBDGki_CONSORT_inclusion_Ns_path = paste0(res_dir, "HBGDki_CONSORT_inclusion_Ns.rds")
metadata_GHAP_metadata_wasting_path = paste0(metadata_dir, "GHAP_metadata_wasting.RDS")
results_GHAP_metadata_wasting_path = paste0(res_dir, "GHAP_metadata_wasting.RDS")
metadata_GHAP_metadata_stunting_path = paste0(metadata_dir, "GHAP_metadata_stunting.RDS")
results_GHAP_metadata_stunting_path = paste0(res_dir, "GHAP_metadata_stunting.RDS")
metadata_GHAP_metadata_stunting_xlsx_path = paste0(metadata_dir, "GHAP_metadata_stunting.xlsx")
icc_res_path = paste0(res_dir,"icc_res.rds")
test_data_path = "C:/Users/andre/Documents/HBGDki/ki-longitudinal-manuscripts/data/simulated test data/testdata.rds"
asset_PCA_allstudies_path = paste0(project_functions_dir, "1_assetPCA-allstudies.R")
filenames = paste0(here::here(), "/ki-filenames.csv")
##################################
#list of monthy and monthly+quarterly cohorts
monthly_cohorts <- c("CMC-V-BCS-2002", "CMIN Peru95", "CMIN Peru89",
"CMIN Bangladesh93","CONTENT", "EE",
"GMS-Nepal", "Guatemala BSC", "IRC",
"Keneba", "MAL-ED", "PROVIDE" , "ResPak",
"TanzaniaChild2", "TDC")
monthly_and_quarterly_cohorts <- c("CMC-V-BCS-2002", "CMIN Peru95", "CMIN Brazil89",
"CMIN GB94", "CMIN Peru89", "CMIN Bangladesh93",
"CONTENT", "EE", "GMS-Nepal",
"Guatemala BSC", "IRC",
"JiVitA-3", "JiVitA-4", "Keneba",
"LCNI-5", "MAL-ED", "PROBIT",
"ResPak", "SAS-CompFeed", "SAS-FoodSuppl",
"TanzaniaChild2", "ZVITAMBO", "TDC", "NIH-Birth",
"NIH-Crypto", "PROVIDE" )
monthly_and_quarterly_cohorts_cc <- c("CMC-V-BCS-2002", "CMIN Peru95", "CMIN Brazil89",
"CMIN GB94", "CMIN Peru89", "CMIN Bangladesh93",
"CONTENT", "EE", "GMS-Nepal",
"Guatemala BSC", "iLiNS-Zinc", "IRC",
"JiVitA-3", "JiVitA-4", "Keneba",
"LCNI-5", "MAL-ED", "PROBIT",
"ResPak", "SAS-CompFeed", "SAS-FoodSuppl",
"TanzaniaChild2", "ZVITAMBO", "TDC", "NIH-Birth",
"NIH-Crypto", "PROVIDE" )
ki_countries <- c( "India", "Peru", "Brazil", "Guinea-Bissau","Bangladesh", "Pakistan",
"Nepal", "Guatemala", "Burkina Faso", "Gambia", "Malawi", "South Africa",
"Tanzania", "Belarus", "Zimbabwe" )