-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA3C.py
224 lines (190 loc) · 9.43 KB
/
A3C.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""
Asynchronous Advantage Actor Critic (A3C) with continuous action space, Reinforcement Learning.
The Pendulum example. Convergence promised, but difficult environment, this code hardly converge.
View more on [莫烦Python] : https://morvanzhou.github.io/tutorials/
Using:
tensorflow 1.0
gym 0.8.0
"""
import multiprocessing
import threading
import tensorflow as tf
import numpy as np
import gym
import os
import shutil
import matplotlib.pyplot as plt
GAME = 'LunarLander-v2'
OUTPUT_GRAPH = False
LOG_DIR = './log'
N_WORKERS = multiprocessing.cpu_count()
MAX_GLOBAL_EP = 5000
GLOBAL_NET_SCOPE = 'Global_Net'
UPDATE_GLOBAL_ITER = 5
GAMMA = 0.99
ENTROPY_BETA = 0.001 # not useful in this case
LR_A = 0.0005 # learning rate for actor
LR_C = 0.001 # learning rate for critic
GLOBAL_RUNNING_R = []
GLOBAL_EP = 0
env = gym.make(GAME)
N_S = env.observation_space.shape[0]
N_A = env.action_space.n
del env
class ACNet(object):
def __init__(self, scope, globalAC=None):
if scope == GLOBAL_NET_SCOPE: # get global network
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S')
self._build_net(N_A)
self.a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
self.c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
else: # local net, calculate losses
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S')
self.a_his = tf.placeholder(tf.int32, [None, ], 'A')
self.v_target = tf.placeholder(tf.float32, [None, 1], 'Vtarget')
self.a_prob, self.v = self._build_net(N_A)
td = tf.subtract(self.v_target, self.v, name='TD_error')
with tf.name_scope('c_loss'):
self.c_loss = tf.reduce_mean(tf.square(td))
with tf.name_scope('a_loss'):
log_prob = tf.reduce_sum(tf.log(self.a_prob) * tf.one_hot(self.a_his, N_A, dtype=tf.float32), axis=1, keep_dims=True)
exp_v = log_prob * td
entropy = -tf.reduce_sum(self.a_prob * tf.log(self.a_prob), axis=1, keep_dims=True) # encourage exploration
self.exp_v = ENTROPY_BETA * entropy + exp_v
self.a_loss = tf.reduce_mean(-self.exp_v)
with tf.name_scope('local_grad'):
self.a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
self.c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
self.a_grads = tf.gradients(self.a_loss, self.a_params)
self.c_grads = tf.gradients(self.c_loss, self.c_params)
with tf.name_scope('sync'):
with tf.name_scope('pull'):
self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.a_params, globalAC.a_params)]
self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.c_params, globalAC.c_params)]
with tf.name_scope('push'):
self.update_a_op = OPT_A.apply_gradients(zip(self.a_grads, globalAC.a_params))
self.update_c_op = OPT_C.apply_gradients(zip(self.c_grads, globalAC.c_params))
def _build_net(self, n_a):
w_init = tf.random_normal_initializer(0., .01)
with tf.variable_scope('critic'):
cell_size = 64
s = tf.expand_dims(self.s, axis=1,
name='timely_input') # [time_step, feature] => [time_step, batch, feature]
rnn_cell = tf.contrib.rnn.BasicRNNCell(cell_size)
self.init_state = rnn_cell.zero_state(batch_size=1, dtype=tf.float32)
outputs, self.final_state = tf.nn.dynamic_rnn(
cell=rnn_cell, inputs=s, initial_state=self.init_state, time_major=True)
cell_out = tf.reshape(outputs, [-1, cell_size], name='flatten_rnn_outputs') # joined state representation
l_c = tf.layers.dense(cell_out, 200, tf.nn.relu6, kernel_initializer=w_init, name='lc')
v = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v') # state value
with tf.variable_scope('actor'):
cell_out = tf.stop_gradient(cell_out, name='c_cell_out')
l_a = tf.layers.dense(cell_out, 300, tf.nn.relu6, kernel_initializer=w_init, name='la')
a_prob = tf.layers.dense(l_a, n_a, tf.nn.softmax, kernel_initializer=w_init, name='ap')
return a_prob, v
def update_global(self, feed_dict): # run by a local
SESS.run([self.update_a_op, self.update_c_op], feed_dict) # local grads applies to global net
def pull_global(self): # run by a local
SESS.run([self.pull_a_params_op, self.pull_c_params_op])
def choose_action(self, s, cell_state): # run by a local
prob_weights, cell_state = SESS.run([self.a_prob, self.final_state], feed_dict={self.s: s[np.newaxis, :],
self.init_state: cell_state})
action = np.random.choice(range(prob_weights.shape[1]),
p=prob_weights.ravel()) # select action w.r.t the actions prob
return action, cell_state
class Worker(object):
def __init__(self, name, globalAC):
self.env = gym.make(GAME)
self.name = name
self.AC = ACNet(name, globalAC)
def work(self):
global GLOBAL_RUNNING_R, GLOBAL_EP
total_step = 1
r_scale = 100
buffer_s, buffer_a, buffer_r = [], [], []
while not COORD.should_stop() and GLOBAL_EP < MAX_GLOBAL_EP:
s = self.env.reset()
ep_r = 0
ep_t = 0
rnn_state = SESS.run(self.AC.init_state) # zero rnn state at beginning
keep_state = rnn_state.copy() # keep rnn state for updating global net
while True:
# if self.name == 'W_0' and total_step % 10 == 0:
# self.env.render()
a, rnn_state_ = self.AC.choose_action(s, rnn_state) # get the action and next rnn state
s_, r, done, info = self.env.step(a)
if r == -100: r = -10
ep_r += r
buffer_s.append(s)
buffer_a.append(a)
buffer_r.append(r/r_scale)
if total_step % UPDATE_GLOBAL_ITER == 0 or done: # update global and assign to local net
if done:
v_s_ = 0 # terminal
else:
v_s_ = SESS.run(self.AC.v, {self.AC.s: s_[np.newaxis, :], self.AC.init_state: rnn_state_})[0,0]
buffer_v_target = []
for r in buffer_r[::-1]: # reverse buffer r
v_s_ = r + GAMMA * v_s_
buffer_v_target.append(v_s_)
buffer_v_target.reverse()
buffer_s, buffer_a, buffer_v_target = np.vstack(buffer_s), np.array(buffer_a), np.vstack(buffer_v_target)
feed_dict = {
self.AC.s: buffer_s,
self.AC.a_his: buffer_a,
self.AC.v_target: buffer_v_target,
self.AC.init_state: keep_state,
}
self.AC.update_global(feed_dict)
buffer_s, buffer_a, buffer_r = [], [], []
self.AC.pull_global()
keep_state = rnn_state_.copy() # replace the keep_state as the new initial rnn state_
s = s_
total_step += 1
rnn_state = rnn_state_ # renew rnn state
ep_t += 1
if done:
if len(GLOBAL_RUNNING_R) == 0: # record running episode reward
GLOBAL_RUNNING_R.append(ep_r)
else:
GLOBAL_RUNNING_R.append(0.99 * GLOBAL_RUNNING_R[-1] + 0.01 * ep_r)
if not self.env.unwrapped.lander.awake: solve = '| Landed'
else: solve = '| ------'
print(
self.name,
"Ep:", GLOBAL_EP,
solve,
"| Ep_r: %i" % GLOBAL_RUNNING_R[-1],
)
GLOBAL_EP += 1
break
if __name__ == "__main__":
SESS = tf.Session()
with tf.device("/cpu:0"):
OPT_A = tf.train.RMSPropOptimizer(LR_A, name='RMSPropA')
OPT_C = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC')
GLOBAL_AC = ACNet(GLOBAL_NET_SCOPE) # we only need its params
workers = []
# Create worker
for i in range(N_WORKERS):
i_name = 'W_%i' % i # worker name
workers.append(Worker(i_name, GLOBAL_AC))
COORD = tf.train.Coordinator()
SESS.run(tf.global_variables_initializer())
if OUTPUT_GRAPH:
if os.path.exists(LOG_DIR):
shutil.rmtree(LOG_DIR)
tf.summary.FileWriter(LOG_DIR, SESS.graph)
worker_threads = []
for worker in workers:
job = lambda: worker.work()
t = threading.Thread(target=job)
t.start()
worker_threads.append(t)
COORD.join(worker_threads)
plt.plot(np.arange(len(GLOBAL_RUNNING_R)), GLOBAL_RUNNING_R)
plt.xlabel('step')
plt.ylabel('Total moving reward')
plt.show()