-
Notifications
You must be signed in to change notification settings - Fork 590
/
Copy pathiGAN_predict.py
213 lines (177 loc) · 7.5 KB
/
iGAN_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import print_function
import theano
import theano.tensor as T
from time import time
from lib import HOGNet
from lib.rng import np_rng
from lib.theano_utils import floatX, sharedX
import numpy as np
from lib import AlexNet
import lasagne
from scipy import optimize
import argparse
from PIL import Image
from pydoc import locate
from lib import activations
def def_feature(layer='conv4', up_scale=4):
print('COMPILING...')
t = time()
x = T.tensor4()
x_t = AlexNet.transform_im(x)
x_net = AlexNet.build_model(x_t, layer=layer, shape=(None, 3, 64, 64), up_scale=up_scale)
AlexNet.load_model(x_net, layer=layer)
x_f = lasagne.layers.get_output(x_net[layer], deterministic=True)
_ftr = theano.function(inputs=[x], outputs=x_f)
print('%.2f seconds to compile _feature function' % (time() - t))
return _ftr
def def_bfgs(model_G, layer='conv4', npx=64, alpha=0.002):
print('COMPILING...')
t = time()
x_f = T.tensor4()
x = T.tensor4()
z = T.matrix()
tanh = activations.Tanh()
gx = model_G(tanh(z))
if layer is 'hog':
gx_f = HOGNet.get_hog(gx, use_bin=True, BS=4)
else:
gx_t = AlexNet.transform_im(gx)
gx_net = AlexNet.build_model(gx_t, layer=layer, shape=(None, 3, npx, npx))
AlexNet.load_model(gx_net, layer=layer)
gx_f = lasagne.layers.get_output(gx_net[layer], deterministic=True)
f_rec = T.mean(T.sqr(x_f - gx_f), axis=(1, 2, 3)) * sharedX(alpha)
x_rec = T.mean(T.sqr(x - gx), axis=(1, 2, 3))
cost = T.sum(f_rec) + T.sum(x_rec)
grad = T.grad(cost, z)
output = [cost, grad, gx]
_invert = theano.function(inputs=[z, x, x_f], outputs=output)
print('%.2f seconds to compile _bfgs function' % (time() - t))
return _invert, z
def def_predict(model_P):
print('COMPILING...')
t = time()
x = T.tensor4()
z = model_P(x)
_predict = theano.function([x], [z])
print('%.2f seconds to compile _predict function' % (time() - t))
return _predict
def def_invert_models(gen_model, layer='conv4', alpha=0.002):
bfgs_model = def_bfgs(gen_model.model_G, layer=layer, npx=gen_model.npx, alpha=alpha)
ftr_model = def_feature(layer=layer)
predict_model = def_predict(gen_model.model_P)
return gen_model, bfgs_model, ftr_model, predict_model
def predict_z(gen_model, _predict, ims, batch_size=32):
n = ims.shape[0]
n_gen = 0
zs = []
n_batch = int(np.ceil(n / float(batch_size)))
for i in range(n_batch):
imb = gen_model.transform(ims[batch_size * i:min(n, batch_size * (i + 1)), :, :, :])
zmb = _predict(imb)
zs.append(zmb)
n_gen += len(imb)
zs = np.squeeze(np.concatenate(zs, axis=0))
if np.ndim(zs) == 1:
zs = zs[np.newaxis, :]
return zs
def invert_bfgs_batch(gen_model, invert_model, ftr_model, ims, z_predict=None, npx=64):
zs = []
recs = []
fs = []
n_imgs = ims.shape[0]
print('reconstruct %d images using bfgs' % n_imgs)
for n in range(n_imgs):
im_n = ims[[n], :, :, :]
if z_predict is not None:
z0_n = z_predict[[n], ...]
else:
z0_n = None
gx, z_value, f_value = invert_bfgs(gen_model, invert_model, ftr_model, im=im_n, z_predict=z0_n, npx=npx)
rec_im = (gx * 255).astype(np.uint8)
fs.append(f_value[np.newaxis, ...])
zs.append(z_value[np.newaxis, ...])
recs.append(rec_im)
recs = np.concatenate(recs, axis=0)
zs = np.concatenate(zs, axis=0)
fs = np.concatenate(fs, axis=0)
return recs, zs, fs
def invert_bfgs(gen_model, invert_model, ftr_model, im, z_predict=None, npx=64):
_f, z = invert_model
nz = gen_model.nz
if z_predict is None:
z_predict = np_rng.uniform(-1., 1., size=(1, nz))
else:
z_predict = floatX(z_predict)
z_predict = np.arctanh(z_predict)
im_t = gen_model.transform(im)
ftr = ftr_model(im_t)
prob = optimize.minimize(f_bfgs, z_predict, args=(_f, im_t, ftr),
tol=1e-6, jac=True, method='L-BFGS-B', options={'maxiter': 200})
print('n_iters = %3d, f = %.3f' % (prob.nit, prob.fun))
z_opt = prob.x
z_opt_n = floatX(z_opt[np.newaxis, :])
[f_opt, g, gx] = _f(z_opt_n, im_t, ftr)
gx = gen_model.inverse_transform(gx, npx=npx)
z_opt = np.tanh(z_opt)
return gx, z_opt, f_opt
def f_bfgs(z0, _f, x, x_f):
z0_n = floatX(z0[np.newaxis, :])
[f, g, gx] = _f(z0_n, x, x_f)
f = f.astype(np.float64)
g = g[0].astype(np.float64)
return f, g
def invert_images_CNN_opt(invert_models, ims, solver='cnn'):
gen_model, invert_model, ftr_model, predict_model = invert_models
n_imgs = len(ims)
print('process %d images' % n_imgs)
# gen_samples(self, z0=None, n=32, batch_size=32, use_transform=True)
if solver == 'cnn' or solver == 'cnn_opt':
z_predict = predict_z(gen_model, predict_model, ims, batch_size=n_imgs)
else:
z_predict = None
if solver == 'cnn':
recs = gen_model.gen_samples(z0=z_predict, n=n_imgs, batch_size=n_imgs)
zs = None
if solver == 'cnn_opt' or solver == 'opt':
recs, zs, loss = invert_bfgs_batch(gen_model, invert_model, ftr_model, ims, z_predict=z_predict, npx=npx)
return recs, zs, z_predict
def parse_args():
parser = argparse.ArgumentParser(description='iGAN: Interactive Visual Synthesis Powered by GAN')
parser.add_argument('--model_name', dest='model_name', help='the model name', default='shoes_64', type=str)
parser.add_argument('--model_type', dest='model_type', help='the generative models and its deep learning framework', default='dcgan_theano', type=str)
parser.add_argument('--input_image', dest='input_image', help='input image', default='./pics/shoes_test.png', type=str)
parser.add_argument('--output_image', dest='output_image', help='output reconstruction image', default=None, type=str)
parser.add_argument('--model_file', dest='model_file', help='the file that stores the generative model', type=str, default=None)
# cnn: feed-forward network; opt: optimization based; cnn_opt: hybrid of the two methods
parser.add_argument('--solver', dest='solver', help='solver (cnn, opt, or cnn_opt)', type=str, default='cnn_opt')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if not args.model_file: # if the model file is not specified
args.model_file = './models/%s.%s' % (args.model_name, args.model_type)
if not args.output_image: # if the output image path is not specified
args.output_image = args.input_image.replace('.png', '_%s.png' % args.solver)
for arg in vars(args):
print('[%s] =' % arg, getattr(args, arg))
# read a single image
im = Image.open(args.input_image)
[h, w] = im.size
print('read image: %s (%dx%d)' % (args.input_image, h, w))
# define the theano models
model_class = locate('model_def.%s' % args.model_type)
gen_model = model_class.Model(model_name=args.model_name, model_file=args.model_file, use_predict=True)
invert_models = def_invert_models(gen_model, layer='conv4', alpha=0.002)
# pre-processing steps
npx = gen_model.npx
im = im.resize((npx, npx))
im = np.array(im)
im_pre = im[np.newaxis, :, :, :]
# run the model
rec, _, _ = invert_images_CNN_opt(invert_models, im_pre, solver=args.solver)
rec = np.squeeze(rec)
rec_im = Image.fromarray(rec)
# resize the image (input aspect ratio)
rec_im = rec_im.resize((h, w))
print('write result to %s' % args.output_image)
rec_im.save(args.output_image)