-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathtrain.py
executable file
·62 lines (53 loc) · 2.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# import torch.backends.cudnn as cudnn
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
opt = TrainOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
dataset = create_dataset(opt)
dataset_size = len(dataset)
print('#training data = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
save_result = True
iter_data_time = time.time()
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batch_size
epoch_iter = total_steps - dataset_size * (epoch - opt.epoch_count)
model.set_input(data)
if model.skip():
continue
model.update_G()
model.update_D()
model.check_nan_inf()
if save_result or total_steps % opt.display_freq == 0:
save_result = save_result or total_steps % opt.update_html_freq == 0
if model.visual_names:
visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=2, save_result=save_result)
save_result = False
if total_steps % opt.print_freq == 0:
losses = model.get_current_losses()
t_model = time.time() - iter_start_time
t_data = iter_start_time - iter_data_time
visualizer.print_current_losses(epoch, epoch_iter, losses, t_model, t_data)
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, opt, losses)
model.clear_running_mean()
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()