-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathtest.py
executable file
·88 lines (79 loc) · 3.38 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
from os.path import join
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images, convert_image
from util.util_voxel import save_vox_to_obj, render
from util import html
from tqdm import tqdm
# options
opt = TestOptions().parse()
opt.num_threads = 0
opt.serial_batches = True # no shuffle
opt.batch_size = 1 # force to be 1
use_df = opt.use_df or opt.dataset_mode.find('df') >= 0
# create dataset
dataset = create_dataset(opt)
model = create_model(opt)
model.setup(opt)
model.netG_3D.eval()
model.set_posepool(dataset.dataset.datasets[0].get_posepool())
print('Loading model %s' % opt.model)
# create website
web_dir = os.path.join(opt.results_dir, '{:s}_views{}_shape{}_r{}'.format(opt.name, opt.n_views, opt.n_shapes, opt.random_view))
webpage = html.HTML(web_dir, 'Training = %s, %s, 2D = %s, 3D = %s' % (opt.name, opt.phase, opt.model2D_dir, opt.model3D_dir))
model_path = os.path.join(web_dir, 'images')
count = 0
prog_bar = tqdm(total=opt.n_shapes)
while (True):
if count == opt.n_shapes:
break
for n, data in enumerate(dataset):
if count == opt.n_shapes:
break
count += 1
model.reset_shape(opt.reset_shape and not opt.real_shape)
model.reset_texture(opt.reset_texture and not opt.real_texture)
model.set_input(data, opt.reset_shape and opt.real_shape, opt.reset_texture and opt.real_texture)
# model.eval_rec()
if not opt.real_shape:
model.sample_3d()
all_images, all_names = [], []
if opt.render_25d:
all_depths, all_depth_names = [], []
all_masks, all_mask_names = [], []
if opt.show_input:
input_real = convert_image(model.input_B)
all_images.append(input_real)
all_names.append('real')
for k in range(opt.n_views):
model.reset_view(reset=True)
image, depth, mask = model.sample_2d(view_id=k, extra=True)
image_np = convert_image(image)
all_images.append(image_np)
all_names.append('view_{:03d}'.format(k))
if opt.render_25d:
depth_np = convert_image(depth)
mask_np = convert_image(mask)
all_depths.append(depth_np)
all_masks.append(mask_np)
all_depth_names.append('depth_{:03d}'.format(k))
all_mask_names.append('mask_{:03d}'.format(k))
if opt.render_3d:
obj_name = join(model_path, 'shape%03d.obj' % (count))
save_vox_to_obj(model.voxel.data.cpu().numpy(), 0.5 if not use_df else 0.85, obj_name)
render_prefix = join(model_path, 'shape{:03d}'.format(count))
render(obj_name, model.views, render_prefix, 512)
img_path = 'shape{:03d}'.format(count)
model.count += 1
save_images(webpage, all_images, all_names, img_path, None,
width=opt.crop_size, aspect_ratio=opt.aspect_ratio)
if opt.render_25d:
save_images(webpage, all_depths, all_depth_names, img_path, None,
width=opt.crop_size, aspect_ratio=opt.aspect_ratio)
save_images(webpage, all_masks, all_mask_names, img_path, None,
width=opt.crop_size, aspect_ratio=opt.aspect_ratio)
webpage.save()
prog_bar.update(1)
webpage.save()