-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgbssl.py
436 lines (354 loc) · 12.4 KB
/
gbssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# coding=utf8
"""
Graph-Based Semi-Supervised Learning (GBSSL) implementation.
"""
# Authors: Yuto Yamaguchi <[email protected]>
# Lisence: MIT
import numpy as np
from scipy import sparse
from abc import ABCMeta, abstractmethod
class Base():
__metaclass__ = ABCMeta
def __init__(self,graph,max_iter=30):
self.max_iter = max_iter
self.graph = graph
@abstractmethod
def _build_propagation_matrix(self):
raise NotImplementedError("Propagation matrix construction must be implemented to fit a model.")
@abstractmethod
def _build_base_matrix(self):
raise NotImplementedError("Base matrix construction must be implemented to fit a model.")
def _init_label_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
return np.zeros((n_samples,n_classes))
def _arrange_params(self):
"""Do nothing by default"""
pass
def fit(self,x,y):
"""Fit a graph-based semi-supervised learning model
All the input data is provided array X (labeled samples only)
and corresponding label array y.
Parameters
----------
x : array_like, shape = [n_labeled_samples]
Node IDs of labeled samples
y : array_like, shape = [n_labeled_samples]
Label IDs of labeled samples
Returns
-------
self : returns an instance of self.
"""
self.x_ = x
self.y_ = y
self._arrange_params()
self.F_ = self._init_label_matrix()
self.P_ = self._build_propagation_matrix()
self.B_ = self._build_base_matrix()
remaining_iter = self.max_iter
while remaining_iter > 0:
self.F_ = self._propagate()
remaining_iter -= 1
return self
def _propagate(self):
return self.P_.dot(self.F_) + self.B_
def predict(self,x):
"""Performs prediction based on the fitted model
Parameters
----------
x : array_like, shape = [n_samples]
Node IDs
Returns
-------
y : array_like, shape = [n_samples]
Predictions for input node IDs
"""
probas = self.predict_proba(x)
return np.argmax(probas,axis=1)
def predict_proba(self,x):
"""Predict probability for each possible label
Parameters
----------
x : array_like, shape = [n_samples]
Node IDs
Returns
-------
probabilities : array_like, shape = [n_samples, n_classes]
Probability distributions across class labels
"""
return (self.F_[x].T / np.sum(self.F_[x], axis=1)).T
class LGC(Base):
"""Local and Global Consistency (LGC) for GBSSL
Parameters
----------
alpha : float
clamping factor
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
Examples
--------
<<<
References
----------
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
Learning with local and global consistency.
Advances in neural information processing systems, 16(16), 321-328.
"""
def __init__(self,graph,alpha=0.99,max_iter=30):
super(LGC, self).__init__(graph,max_iter=30)
self.alpha=alpha
def _build_propagation_matrix(self):
""" LGC computes the normalized Laplacian as its propagation matrix"""
D2 = np.sqrt(sparse.diags((1.0/(self.graph.sum(1))).T.tolist()[0],offsets=0))
S = D2.dot(self.graph).dot(D2)
return self.alpha*S
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
B = np.zeros((n_samples,n_classes))
B[self.x_,self.y_] = 1
return (1-self.alpha)*B
class HMN(Base):
"""Harmonic funcsion (HMN) for GBSSL
Parameters
----------
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
Examples
--------
<<<
References
----------
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
Semi-supervised learning using gaussian fields and harmonic functions.
In ICML (Vol. 3, pp. 912-919).
"""
def _build_propagation_matrix(self):
D = sparse.diags((1.0/(self.graph.sum(1))).T.tolist()[0],offsets=0)
P = D.dot(self.graph)
P[self.x_] = 0
return P
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
B = np.zeros((n_samples,n_classes))
B[self.x_,self.y_] = 1
return B
class PARW(Base):
"""Partially Absorbing Random Walk (PARW) for GBSSL
Parameters
----------
lamb: float (default=0.001)
Absorbing parameter
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
Examples
--------
<<<
References
----------
Wu, X. M., Li, Z., So, A. M., Wright, J., & Chang, S. F. (2012).
Learning with partially absorbing random walks.
In Advances in Neural Information Processing Systems (pp. 3077-3085).
"""
def __init__(self,graph,lamb=1.0,max_iter=30):
super(PARW, self).__init__(graph,max_iter=30)
self.lamb=lamb
def _build_propagation_matrix(self):
d = np.array(self.graph.sum(1).T)[0]
Z = sparse.diags(1.0 / (d+self.lamb))
P = Z.dot(self.graph)
return P
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
B = np.zeros((n_samples,n_classes))
B[self.x_,self.y_] = 1
d = np.array(self.graph.sum(1).T)[0]
Z = sparse.diags(1.0 / (d+self.lamb))
Lamb = sparse.diags(self.lamb,shape=(n_samples,n_samples))
return Z.dot(Lamb).dot(B)
class MAD(Base):
"""Modified Adsorption (MAD) for GBSSL
Parameters
----------
mu : array, shape = [3] > 0 (default = [1.0, 0.5, 1.0])
Define importance among inj, cont, and abnd
beta : float
Used to determine p_inj_, p_cont_ and p_abnd_
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
p_inj_ : array, shape = [n_samples]
Probability to inject
p_cont_ : array, shape = [n_samples]
Probability to continue random walk
p_abnd_ : array, shape = [n_samples]
defined as 1 - p_inj - p_cont
Examples
--------
<<<
References
----------
Talukdar, P. P., & Crammer, K. (2009).
New regularized algorithms for transductive learning.
In Machine Learning and Knowledge Discovery in Databases (pp. 442-457). Springer Berlin Heidelberg.
"""
def __init__(self,graph,mu=np.array([1.0,0.5,1.0]),beta=2.0,max_iter=30):
super(MAD, self).__init__(graph,max_iter=30)
self.mu = mu
self.beta = beta
def _init_label_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
return np.zeros((n_samples,n_classes+1)) # including dummy label
def _build_normalization_term(self):
W = self.graph.T.multiply(sparse.csr_matrix(self.p_cont_)).T
d = np.array(W.sum(1).T)[0]
dT = np.array(W.sum(0))[0]
return sparse.diags(1.0/(self.mu[0]*self.p_inj_ + self.mu[1]*(d+dT) + self.mu[2]))
def _build_propagation_matrix(self):
Z = self._build_normalization_term()
W = self.graph.T.multiply(sparse.csr_matrix(self.p_cont_)).T
WT = W.T
return Z.dot(self.mu[1]*(W+WT))
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
B = np.zeros((n_samples,n_classes+1)) # including dummy label
B[self.x_,self.y_] = 1
Z = self._build_normalization_term()
S = sparse.diags(self.p_inj_)
R = np.zeros((n_samples,n_classes+1))
R[:,-1] = self.p_abnd_
return Z.dot(self.mu[0]*S.dot(B)+self.mu[2]*R)
def _arrange_params(self):
P = sparse.csr_matrix(self.graph / np.maximum(self.graph.sum(1),1))
logP = P.copy()
logP.data = np.log(logP.data)
H = - np.array(P.multiply(logP).sum(1).T)[0]
c = np.log(self.beta) / np.log(self.beta+np.exp(H))
d = np.zeros(self.graph.shape[0])
d[self.x_] = (1-c[self.x_]) * np.sqrt(H[self.x_])
z = np.maximum(c+d,1)
self.p_inj_ = d / z
self.p_cont_ = c / z
self.p_abnd_ = 1 - self.p_inj_ - self.p_cont_
def predict_proba(self,x):
"""Predict probability for each possible label
Parameters
----------
x : array_like, shape = [n_samples]
Node IDs
Returns
-------
probabilities : array_like, shape = [n_samples, n_classes]
Probability distributions across class labels
"""
return (self.F_[x,:-1].T / np.sum(self.F_[x,:-1], axis=1)).T
class OMNIProp(Base):
"""OMNI-Prop for GBSSL
Parameters
----------
lamb : float > 0 (default = 1.0)
Define importance between prior and evidence from neighbors
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
Examples
--------
<<<
References
----------
Yamaguchi, Y., Faloutsos, C., & Kitagawa, H. (2015, February).
OMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation.
In Twenty-Ninth AAAI Conference on Artificial Intelligence.
"""
def __init__(self,graph,lamb=1.0,max_iter=30):
super(OMNIProp,self).__init__(graph,max_iter)
self.lamb = lamb
def _build_propagation_matrix(self):
d = np.array(self.graph.sum(1).T)[0]
dT = np.array(self.graph.sum(0))[0]
Q = (sparse.diags(1.0/(d+self.lamb)).dot(self.graph)).dot(sparse.diags(1.0/(dT+self.lamb)).dot(self.graph.T))
Q[self.x_] = 0
return Q
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
unlabeled = np.setdiff1d(np.arange(n_samples),self.x_)
dU = np.array(self.graph[unlabeled].sum(1).T)[0]
dT = np.array(self.graph.sum(0))[0]
n_samples = self.graph.shape[0]
r = sparse.diags(1.0/(dU+self.lamb)).dot(self.lamb*self.graph[unlabeled].dot(sparse.diags(1.0/(dT+self.lamb))).dot(np.ones(n_samples))+self.lamb)
b = np.ones(n_classes) / float(n_classes)
B = np.zeros((n_samples,n_classes))
B[unlabeled] = np.outer(r,b)
B[self.x_,self.y_] = 1
return B
class CAMLP(Base):
"""Confidence-Aware Modulated Label Propagation (CAMLP) for GBSSL
Parameters
----------
beta : float > 0 (default = 0.1)
Define importance between prior and evidence from neighbors
H : array_like, shape = [n_classes, n_classes]
Define affinities between labels
if None, identity matrix is set
max_iter : float
maximum number of iterations allowed
Attributes
----------
x_ : array, shape = [n_samples]
Input array of node IDs.
Examples
--------
<<<
References
----------
Yamaguchi, Y., Faloutsos, C., & Kitagawa, H. (2016, May).
CAMLP: Confidence-Aware Modulated Label Propagation.
In SIAM International Conference on Data Mining.
"""
def __init__(self,graph,beta=0.1,H=None,max_iter=30):
super(CAMLP,self).__init__(graph,max_iter)
self.beta=beta
self.H=H
def _arrange_params(self):
if self.H == None:
n_classes = self.y_.max()+1
self.H = np.identity(n_classes)
def _propagate(self):
return self.P_.dot(self.F_).dot(self.H) + self.B_
def _build_normalization_term(self):
d = np.array(self.graph.sum(1).T)[0]
return sparse.diags(1.0/(1.0+d*self.beta))
def _build_propagation_matrix(self):
Z = self._build_normalization_term()
return Z.dot(self.beta*self.graph)
def _build_base_matrix(self):
n_samples = self.graph.shape[0]
n_classes = self.y_.max()+1
B = np.ones((n_samples,n_classes))/float(n_classes)
B[self.x_] = 0
B[self.x_,self.y_] = 1
Z = self._build_normalization_term()
return Z.dot(B)