-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
58 lines (45 loc) · 1.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from contextlib import contextmanager
from importlib import import_module
from pathlib import Path
from scalene import scalene_profiler
import h5py
import matplotlib.pyplot as plt
import numpy as np
import typer
@contextmanager
def profile():
is_scalene_running = scalene_profiler.Scalene._Scalene__initialized
if is_scalene_running:
scalene_profiler.start()
try:
yield
finally:
if is_scalene_running:
scalene_profiler.stop()
def load_image(folder):
with h5py.File(folder / "data.hdf5", "r") as f:
return f["image"][:]
def plot(image, visualization):
fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(22, 10))
ax[0].set_title("Image")
ax[0].imshow(image)
ax[1].imshow(visualization)
ax[1].set_title("Predictions")
fig.tight_layout()
plt.show()
def main(
version: str,
show: bool = False,
data: Path = Path("data/s"),
):
analysis_module = import_module(version)
with profile():
colored_probabilities = analysis_module.load_and_colorcode_probabilities(data)
# Display the image
if show:
image = load_image(data)
# convert explicitly to np.ndarray[uint8] for v0/v1
colored_probabilities = np.array(colored_probabilities, dtype=np.uint8)
plot(image, colored_probabilities)
if __name__ == '__main__':
typer.run(main)